ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface explosion cavities

136   0   0.0 ( 0 )
 نشر من قبل Adrien Benusiglio
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a fluid dynamics video on cavities created by explosions of firecrackers at the water free surface. We use three types of firecrackers containing 1, 1.3 and 5 g of flash powder. The firecrackers are held with their center at the surface of water in a cubic meter pool. The movies are recorded from the side with a high-speed video camera. Without confinement the explosion produces an hemispherical cavity. Right after the explosion this cavity grows isotropically, the bottom then stops while the sides continue to expand. In the next phase the bottom of the cavity accelerates backwards to the surface. During this phase the convergence of the flow creates a central jet that rises above the free surface. In the last part of the video the explosion is confined in a vertical open tube made of glass and of centimetric diameter. The explosion creates a cylindrical cavity that develops towards the free end of the tube. Depending on the charge, the cavity can either stop inside the tube or at its exit, but never escapes.

قيم البحث

اقرأ أيضاً

Air cavities, i.e. air layers developed behind cavitators, are seen as a promising drag reducing method in the maritime industry. Here we utilize the Taylor-Couette (TC) geometry, i.e. the flow between two concentric, independently rotating cylinders , to study the effect of air cavities in this closed setup, which is well-accessible for drag measurements and optical flow visualizations. We show that stable air cavities can be formed, and that the cavity size increases with Reynolds number and void fraction. The streamwise cavity length strongly depends on the axial position due to buoyancy forces acting on the air. Strong secondary flows, which are introduced by a counter-rotating outer cylinder, clearly decrease the stability of the cavities, as air is captured in the Taylor rolls rather than in the cavity. Surprisingly, we observed that local air injection is not necessary to sustain the air cavities; as long as air is present in the system it is found to be captured in the cavity. We show that the drag is decreased significantly as compared to the case without air, but with the geometric modifications imposed on the TC system by the cavitators. As the void fraction increases, the drag of the system is decreased. However, the cavitators itself significantly increase the drag due to their hydrodynamic resistance (pressure drag): In fact, a net drag increase is found when compared to the standard smooth-wall TC case. Therefore, one must first overcome the added drag created by the cavitators before one obtains a net drag reduction.
We report experimental observations of two canonical surface wave patterns --- ship waves and ring waves --- skewed by sub-surface shear, thus confirming effects predicted by recent theory. Observed ring waves on a still surface with sub-surface shea r current are strikingly asymmetric, an effect of strongly anisotropic wave dispersion. Ship waves for motion across a sub--surface current on a still surface exhibit striking asymmetry about the ships line of motion, and large differences in wake angle and transverse wavelength for upstream vs downstream motion are demonstrated, all of which in good agreement with theoretical predictions. Neither of these phenomena can occur on a depth-uniform current. A quantitative comparison of measured vs predicted average phase shift for a ring wave is grossly mispredicted by no-shear theory, but in good agreement with predictions for the measured shear current. A clear difference in wave frequency within the ring wave packet is observed in the upstream vs downstream direction for all shear flows, while it conforms with theory for quiescent water for propagation normal to the shear current, as expected. Peak values of the measured 2-dimensional Fourier spectrum for ship waves are shown to agree well with the predicted criterion of stationary ship waves, with the exception of some cases where results are imperfect due to the limited wave-number resolution, transient effects and/or experimental noise. Experiments were performed on controlled shear currents created in two different ways, with a curved mesh, and beneath a blocked stagnant-surface flow. Velocity profiles were measured with particle image velocimetry, and surface waves with a synthetic schlieren method. Our observations lend strong empirical support to recent predictions that wave forces on vessels and structures can be greatly affected by shear in estuarine and tidal waters.
Angular momentum of spinning bodies leads to their remarkable interactions with fields, waves, fluids, and solids. Orbiting celestial bodies, balls in sports, liquid droplets above a hot plate, nanoparticles in optical fields, and spinning quantum pa rticles exhibit nontrivial rotational dynamics. Here, we report self-guided propulsion of magnetic fast-spinning particles on a liquid surface in the presence of a solid boundary. Above some critical spinning frequency (higher rotational Reynolds numbers), such particles generate localized 3D vortices and form composite spinner-vortex quasi-particles with nontrivial, yet robust dynamics. Such spinner-vortices are attracted and dynamically trapped near the boundaries, propagating along the wall of any shape similarly to liquid wheels. The propulsion velocity and the distance to the wall are controlled by the angular velocity of the spinner via the balance between the Magnus and wall-repulsion forces. Our results offer a new type of surface vehicles and provide a powerful tool to manipulate spinning objects in fluids.
The propagation of surface water waves interacting with a current and an uneven bottom is studied. Such a situation is typical for ocean waves where the winds generate currents in the top layer of the ocean. The role of the bottom topography is taken into account since it also influences the local wave and current patterns. Specific scaling of the variables is selected which leads to approximations of Boussinesq and KdV types. The arising KdV equation with variable coefficients, dependent on the bottom topography, is studied numerically when the initial condition is in the form of the one soliton solution for the initial depth. Emergence of new solitons is observed as a result of the wave interaction with the uneven bottom.
Understanding the growth dynamics of the microbubbles produced by plasmonic heating can benefit a wide range of applications like microfluidics, catalysis, micro-patterning and photo-thermal energy conversion. Usually, surface plasmonic bubbles are g enerated on plasmonic structures pre-deposited on the surface subject to laser heating. In this work, we investigate the growth dynamics of surface microbubbles generated in plasmonic nanoparticle (NP) suspension. We observe much faster bubble growth rates compared to those in pure water with surface plasmonic structures. Our analyses show that the volumetric heating effect around the surface bubble due to the existence of NPs in the suspension is the key to explain this difference. Such volumetric heating increases the temperature around the surface bubble more efficiently compared to surface heating which enhances the expelling of dissolved gas. We also find that the bubble growth rates can be tuned in a very wide range by changing the concentration of NPs, besides laser power and dissolved gas concentration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا