ﻻ يوجد ملخص باللغة العربية
Air cavities, i.e. air layers developed behind cavitators, are seen as a promising drag reducing method in the maritime industry. Here we utilize the Taylor-Couette (TC) geometry, i.e. the flow between two concentric, independently rotating cylinders, to study the effect of air cavities in this closed setup, which is well-accessible for drag measurements and optical flow visualizations. We show that stable air cavities can be formed, and that the cavity size increases with Reynolds number and void fraction. The streamwise cavity length strongly depends on the axial position due to buoyancy forces acting on the air. Strong secondary flows, which are introduced by a counter-rotating outer cylinder, clearly decrease the stability of the cavities, as air is captured in the Taylor rolls rather than in the cavity. Surprisingly, we observed that local air injection is not necessary to sustain the air cavities; as long as air is present in the system it is found to be captured in the cavity. We show that the drag is decreased significantly as compared to the case without air, but with the geometric modifications imposed on the TC system by the cavitators. As the void fraction increases, the drag of the system is decreased. However, the cavitators itself significantly increase the drag due to their hydrodynamic resistance (pressure drag): In fact, a net drag increase is found when compared to the standard smooth-wall TC case. Therefore, one must first overcome the added drag created by the cavitators before one obtains a net drag reduction.
In this study we experimentally investigate bubbly drag reduction in a highly turbulent flow of water with dispersed air at $5.0 times 10^{5} leq text{Re} leq 1.7 times 10^{6}$ over a non-wetting surface containing micro-scale roughness. To do so, th
We report on the modification of drag by neutrally buoyant spherical particles in highly turbulent Taylor-Couette flow. These particles can be used to disentangle the effects of size, deformability, and volume fraction on the drag, when contrasted wi
In this study, we combine experiments and direct numerical simulations to investigate the effects of the height of transverse ribs at the walls on both global and local flow properties in turbulent Taylor-Couette flow. We create rib roughness by atta
Emulsions are omnipresent in the food industry, health care, and chemical synthesis. In this Letter the dynamics of meta-stable oil-water emulsions in highly turbulent ($10^{11}leqtext{Ta}leq 3times 10^{13}$) Taylor--Couette flow, far from equilibriu
Recent studies have brought into question the view that at sufficiently high Reynolds number turbulence is an asymptotic state. We present the first direct observation of the decay of turbulent states in Taylor-Couette flow with lifetimes spanning fi