ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments

236   0   0.0 ( 0 )
 نشر من قبل Koichi Miyamoto
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study future observational constraints on cosmic string parameters from various types of next-generation experiments: direct detection of gravitational waves (GWs), pulsar timing array, and the cosmic microwave background (CMB). We consider both GW burst and stochastic GW background searches by ground- and space-based interferometers as well as GW background detection in pulsar timing experiments. We also consider cosmic string contributions to the CMB temperature and polarization anisotropies. These different types of observations offer independent probes of cosmic strings and may enable us to investigate cosmic string properties if the signature is detected. In this paper, we evaluate the power of future experiments to constrain cosmic string parameters, such as the string tension Gmu, the initial loop size alpha, and the reconnection probability p, by performing Fisher information matrix calculations. We find that combining the information from the different types of observations breaks parameter degeneracies and provides more stringent constraints on the parameters. We also find future space-borne interferometers independently provide a highly precise determination of the parameters.

قيم البحث

اقرأ أيضاً

Gravitational waves (GWs) are one of the key signatures of cosmic strings. If GWs from cosmic strings are detected in future experiments, not only their existence can be confirmed but also their properties might be probed. In this paper, we study the determination of cosmic string parameters through direct detection of GW signatures in future ground-based GW experiments. We consider two types of GWs, bursts and the stochastic GW background, which provide us with different information about cosmic string properties. Performing the Fisher matrix calculation on the cosmic string parameters, such as parameters governing the string tension $Gmu$ and initial loop size $alpha$ and the reconnection probability $p$, we find that the two different types of GW can break degeneracies in some of these parameters and provide better constraints than those from each measurement.
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper ties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions $Gmu gtrsim mathcal{O}(10^{-17})$, improving by about $6$ orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially $3$ orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISAs frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
We combine new analysis of the stochastic gravitational wave background to be expected from cosmic strings with the latest pulsar timing array (PTA) limits to give an upper bound on the energy scale of the possible cosmic string network, $Gmu < 1.5ti mes 10^{-11}$ at the 95% confidence level. We also show bounds from LIGO and to be expected from LISA and BBO. Current estimates for the gravitational wave background from supermassive black hole binaries are at the level where a PTA detection is expected. But if PTAs do observe a background soon, it will be difficult in the short term to distinguish black holes from cosmic strings as the source, because the spectral indices from the two sources happen to be quite similar. If PTAs do not observe a background, then the limits on $Gmu$ will improve somewhat, but a string network with $Gmu$ substantially below $10^{-11}$ will produce gravitational waves primarily at frequencies too high for PTA observation, so significant further progress will depend on intermediate-frequency observatories such as LISA, DECIGO and BBO.
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so -called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in orderto characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, $Gmull 10^{-7}$,, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Primordial magnetic fields (PMFs) can source gravitational wave background (GWB). In this paper, we investigate the possible constraints on small-scale PMF considering the ongoing and forthcoming direct detection observations of GWB. In contrast to t he conventional cosmological probes, e.g., cosmic microwave background anisotropies, which are useful to investigate large-scale PMFs ($>1 {rm Mpc}$), the direct detection experiments of GWB can explore small-scale PMFs whose scales correspond to the observed frequencies of GWB. We show that future ground-based or space-based interferometric gravitational wave detectors give a strong constraint of about $10^{2} {rm nG}$ on much smaller scales of about $kapprox 10^{12} {rm Mpc}^{-1}$. We also demonstrate that pulsar timing arrays have a potential to strongly constrain PMFs. The current limits on GWB from pulsar timing arrays can put the tight constraint on the amplitude of the PMFs of about $30 {rm nG}$ whose coherent length is of about $kapprox 10^{6} {rm Mpc}^{-1}$. The future experiments for the direct detection of GWB by the Square Kilometre Array could give much tighter constraints on the amplitude of PMFs about $5 {rm nG}$ on $kapprox 10^{6} {rm Mpc}^{-1}$, on which scales, it is difficult to reach by using the cosmological observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا