ترغب بنشر مسار تعليمي؟ اضغط هنا

New limits on cosmic strings from gravitational wave observation

173   0   0.0 ( 0 )
 نشر من قبل Ken D. Olum
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine new analysis of the stochastic gravitational wave background to be expected from cosmic strings with the latest pulsar timing array (PTA) limits to give an upper bound on the energy scale of the possible cosmic string network, $Gmu < 1.5times 10^{-11}$ at the 95% confidence level. We also show bounds from LIGO and to be expected from LISA and BBO. Current estimates for the gravitational wave background from supermassive black hole binaries are at the level where a PTA detection is expected. But if PTAs do observe a background soon, it will be difficult in the short term to distinguish black holes from cosmic strings as the source, because the spectral indices from the two sources happen to be quite similar. If PTAs do not observe a background, then the limits on $Gmu$ will improve somewhat, but a string network with $Gmu$ substantially below $10^{-11}$ will produce gravitational waves primarily at frequencies too high for PTA observation, so significant further progress will depend on intermediate-frequency observatories such as LISA, DECIGO and BBO.

قيم البحث

اقرأ أيضاً

Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the proper ties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions $Gmu gtrsim mathcal{O}(10^{-17})$, improving by about $6$ orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially $3$ orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISAs frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
We study future observational constraints on cosmic string parameters from various types of next-generation experiments: direct detection of gravitational waves (GWs), pulsar timing array, and the cosmic microwave background (CMB). We consider both G W burst and stochastic GW background searches by ground- and space-based interferometers as well as GW background detection in pulsar timing experiments. We also consider cosmic string contributions to the CMB temperature and polarization anisotropies. These different types of observations offer independent probes of cosmic strings and may enable us to investigate cosmic string properties if the signature is detected. In this paper, we evaluate the power of future experiments to constrain cosmic string parameters, such as the string tension Gmu, the initial loop size alpha, and the reconnection probability p, by performing Fisher information matrix calculations. We find that combining the information from the different types of observations breaks parameter degeneracies and provides more stringent constraints on the parameters. We also find future space-borne interferometers independently provide a highly precise determination of the parameters.
Cosmic strings are generically predicted in many extensions of the Standard Model of particle physics. We propose a new avenue for detecting cosmic strings through their effect on the filamentary structure in the cosmic web. Using cosmological simula tions of the density wake from a cosmic string, we examine a variety of filament structure probes. We show that the largest effect of the cosmic string is an overdensity in the filament distribution around the string wake. The signal from the overdensity is stronger at higher redshift, and more robust with a wider field. We analyze the spatial distribution of filaments from a publicly available catalog of filaments built from SDSS galaxies. With existing data, we find no evidence for the presence of a cosmic string wake with string tension parameter $Gmu$ above $5times 10^{-6}$. However, we project WFIRST will be able to detect a signal from such a wake at the $99%$ confidence level at redshift $z=2$, with significantly higher confidence and the possibility of probing lower tensions ($Gmu sim 10^{-6}$), at $z=10$. The sensitivity of this method is not competitive with constraints derived from the CMB. However, it provides an independent discovery channel at low redshift, which could be a smoking-gun in scenarios where the CMB bound can be weakened.
We investigate the effect of the stochastic gravitational wave (GW) background produced by kinks on infinite cosmic strings, whose spectrum was derived in our previous work, on the B-mode power spectrum of the cosmic microwave background (CMB) anisot ropy. We find that the B-mode polarization due to kinks is comparable to that induced by the motion of the string network and hence the contribution of GWs from kinks is important for estimating the B-mode power spectrum originating from cosmic strings. If the tension of cosmic strings mu is large enough i.e., Gmu >~ 10^{-8}, B-mode polarization induced by cosmic strings can be detected by future CMB experiments.
The third-generation ground-based gravitational-wave (GW) detector, Cosmic Explorer (CE), is scheduled to start its observation in the 2030s. In this paper, we make a forecast for cosmological parameter estimation with gravitational-wave standard sir en observation from the CE. We use the simulated GW standard siren data of CE to constrain the $Lambda$CDM, $w$CDM and CPL models. We combine the simulated GW data with the current cosmological electromagnetic observations including the latest cosmic microwave background anisotropies data from Planck, the optical baryon acoustic oscillation measurements, and the type Ia supernovae observation (Pantheon compilation) to do the analysis. We find that the future standard siren observation from CE will improve the cosmological parameter estimation to a great extent, since the future GW standard siren data can well break the degeneracies generated by the optical observations between various cosmological parameters. We also find that the CEs constraining capability on the cosmological parameters is slightly better than that of the same-type GW detector, the Einstein Telescope. In addition, the synergy between the GW standard siren observation from CE and the 21 cm emission observation from SKA is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا