ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid Recovery for Systems with Scarce Faults

274   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Chung-Hao Huang




اسأل ChatGPT حول البحث

Our goal is to achieve a high degree of fault tolerance through the control of a safety critical systems. This reduces to solving a game between a malicious environment that injects failures and a controller who tries to establish a correct behavior. We suggest a new control objective for such systems that offers a better balance between complexity and precision: we seek systems that are k-resilient. In order to be k-resilient, a system needs to be able to rapidly recover from a small number, up to k, of local faults infinitely many times, provided that blocks of up to k faults are separated by short recovery periods in which no fault occurs. k-resilience is a simple but powerful abstraction from the precise distribution of local faults, but much more refined than the traditional objective to maximize the number of local faults. We argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We show that the computational complexity of constructing optimal control with respect to resilience is low and demonstrate the feasibility through an implementation and experimental results.


قيم البحث

اقرأ أيضاً

Uninterruptible power supply is the main motive of power utility companies that motivate them for identifying and locating the different types of faults as quickly as possible to protect the power system prevent complete power black outs using intell igent techniques. Thus, the present research work presents a novel method for detection of fault disturbances based on Wavelet Transform (WT) and Independent Component Analysis (ICA). The voltage signal is taken offline under fault conditions and is being processed through wavelet and ICA for detection. The time-frequency resolution from WT transform detects the fault initiation instant in the signal. Again, a performance index is calculated from independent component analysis under fault condition which is used to detect the fault disturbance in the voltage signal. The proposed approach is tested to be robust enough under various operating scenarios like without noise, with 20-dB noise and variation in frequency. Further, the detection study is carried out using a performance index, energy content, by applying the existing Fourier transform (FT), short time Fourier transform (STFT) and the proposed wavelet transform. Fault disturbances are detected if the energy calculated in each scenario is greater than the corresponding threshold value. The fault detection study is simulated in MATLAB/Simulink for a typical power system.
By leveraging large clusters of commodity hardware, the Cloud offers great opportunities to optimize the operative costs of software systems, but impacts significantly on the reliability of software applications. The lack of control of applications o ver Cloud execution environments largely limits the applicability of state-of-the-art approaches that address reliability issues by relying on heavyweight training with injected faults. In this paper, we propose emph(LOUD}, a lightweight fault localization approach that relies on positive training only, and can thus operate within the constraints of Cloud systems. emph{LOUD} relies on machine learning and graph theory. It trains machine learning models with correct executions only, and compensates the inaccuracy that derives from training with positive samples, by elaborating the outcome of machine learning techniques with graph theory algorithms. The experimental results reported in this paper confirm that emph{LOUD} can localize faults with high precision, by relying only on a lightweight positive training.
In case of multiple node failures performance becomes very low as compare to single node failure. Failures of nodes in cluster computing can be tolerated by multiple fault tolerant computing. Existing recovery schemes are efficient for single fault b ut not with multiple faults. Recovery scheme proposed in this paper having two phases; sequentially phase, concurrent phase. In sequentially phase, loads of all working nodes are uniformly and evenly distributed by proposed dynamic rank based and load distribution algorithm. In concurrent phase, loads of all failure nodes as well as new job arrival are assigned equally to all available nodes by just finding the least loaded node among the several nodes by failure nodes job allocation algorithm. Sequential and concurrent executions of algorithms improve the performance as well better resource utilization. Dynamic rank based algorithm for load redistribution works as a sequential restoration algorithm and reassignment algorithm for distribution of failure nodes to least loaded computing nodes works as a concurrent recovery reassignment algorithm. Since load is evenly and uniformly distributed among all available working nodes with less number of iterations, low iterative time and communication overheads hence performance is improved. Dynamic ranking algorithm is low overhead, high convergence algorithm for reassignment of tasks uniformly among all available nodes. Reassignments of failure nodes are done by a low overhead efficient failure job allocation algorithm. Test results to show effectiveness of the proposed scheme are presented.
Semantic segmentation is a challenging vision problem that usually necessitates the collection of large amounts of finely annotated data, which is often quite expensive to obtain. Coarsely annotated data provides an interesting alternative as it is u sually substantially more cheap. In this work, we present a method to leverage coarsely annotated data along with fine supervision to produce better segmentation results than would be obtained when training using only the fine data. We validate our approach by simulating a scarce data setting with less than 200 low resolution images from the Cityscapes dataset and show that our method substantially outperforms solely training on the fine annotation data by an average of 15.52% mIoU and outperforms the coarse mask by an average of 5.28% mIoU.
The problem of behaviour prediction for linear parameter-varying systems is considered in the interval framework. It is assumed that the system is subject to uncertain inputs and the vector of scheduling parameters is unmeasurable, but all uncertaint ies take values in a given admissible set. Then an interval predictor is designed and its stability is guaranteed applying Lyapunov function with a novel structure. The conditions of stability are formulated in the form of linear matrix inequalities. Efficiency of the theoretical results is demonstrated in the application to safe motion planning for autonomous vehicles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا