ترغب بنشر مسار تعليمي؟ اضغط هنا

Vorticity from isocurvature in the early universe

66   0   0.0 ( 0 )
 نشر من قبل Adam J. Christopherson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vorticity is ubiquitous in nature however, to date, studies of vorticity in cosmology and the early universe have been quite rare. In this paper, based on a talk in session CM1 of the 13th Marcel Grossmann Meeting, we consider vorticity generation from scalar cosmological perturbations of a perfect fluid system. We show that, at second order in perturbation theory, vorticity is sourced by a coupling between energy density and entropy gradients, thus extending a well-known feature of classical fluid dynamics to a relativistic cosmological framework. This induced vorticity, sourced by isocurvature perturbations, may prove useful in the future as an additional discriminator between inflationary models.

قيم البحث

اقرأ أيضاً

In this paper I review some recent, interlinked, work undertaken using cosmological perturbation theory -- a powerful technique for modelling inhomogeneities in the Universe. The common theme which underpins these pieces of work is the presence of no n-adiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or non-adiabatic pressure perturbations. This generalizes Croccos theorem to a cosmological setting. I then introduce isocurvature perturbations in different models, focusing on the entropy perturbation in standard, concordance cosmology, and in inflationary models involving two scalar fields. As the final topic, I investigate magnetic fields, which are a potential observational consequence of vorticity in the early universe. I briefly review some recent work on including magnetic fields in perturbation theory in a consistent way. I show, using solely analytical techniques, that magnetic fields can be generated by higher order perturbations, albeit too small to provide the entire primordial seed field, in agreement with some numerical studies. I close with a summary and some potential extensions of this work.
We study the formation of first molecules, negative Hydrogen ions and molecular ions in model of the Universe with cosmological constant and cold dark matter. The cosmological recombination is described in the framework of modified model of the effec tive 3-level atom, while the kinetics of chemical reactions in the framework of the minimal model for Hydrogen, Deuterium and Helium. It is found that the uncertainties of molecular abundances caused by the inaccuracies of computation of cosmological recombination are about 2-3%. The uncertainties of values of cosmological parameters affect the abundances of molecules, negative Hydrogen ions and molecular ions at the level of up to 2%. In the absence of cosmological reionization at redshift $z=10$ the ratios of abundances to the Hydrogen one are $3.08times10^{-13}$ for $H^-$, $2.37times10^{-6}$ for $H_2$, $1.26times10^{-13}$ for $H_2^+$, $1.12times10^{-9}$ for $HD$ and $8.54times10^{-14}$ for $HeH^+$.
X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the inter-galactic medium, potentially having a significant contribution to the heating and reionization of the early Universe. The two most important sources of X-ray photons in the Universe are active galactic nuclei (AGN) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z~ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z>6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ~300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages > 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.
120 - Chris J. Willott 2011
The most distant quasar yet discovered sets constraints on the formation mechanism of black holes. Its light spectrum has tantalizing features that are expected to be observed before the reionization epoch ended.
The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the kinetic terms between the brane modulus parametrizing the position of the five-brane in the bulk and the dilaton and volume moduli. We show how to separate explicitly the adiabatic and isorcuvature modes by performing a rotation in field space. Our results indicate that adiabatic and isocurvature pertubations might be cross-correlated and that curvature perturbations might be entirely seeded by isocurvature perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا