ترغب بنشر مسار تعليمي؟ اضغط هنا

Isocurvature perturbations in the Ekpyrotic universe

87   0   0.0 ( 0 )
 نشر من قبل Antonio Riotto
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We show that the generation of isocurvature perturbations is a generic prediction of the Ekpyrotic Universe. This is due to the interactions in the kinetic terms between the brane modulus parametrizing the position of the five-brane in the bulk and the dilaton and volume moduli. We show how to separate explicitly the adiabatic and isorcuvature modes by performing a rotation in field space. Our results indicate that adiabatic and isocurvature pertubations might be cross-correlated and that curvature perturbations might be entirely seeded by isocurvature perturbations.

قيم البحث

اقرأ أيضاً

We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, that can be entirely described using 4d effective field theory. The mechanism, bas ed on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modelled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the scalar spectral tilt n tends to range from slightly blue to red, with 0.97 < n < 1.02 for the simplest models, a range compatible with current observations but shifted by a few per cent towards the blue compared to the prediction of the simplest, large-field inflationary models.
150 - A. Linde , V. Mukhanov , 2009
In a recent paper arXiv:0910.2230, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of state exponentially rapidly changed during a short time interval. Leaving aside the singularity problem and the difficult question about the possibility to transmit these perturbations from a contracting Universe to the expanding phase, we will show that the methods used in arXiv:0910.2230 are inapplicable for the description of the cosmological evolution and of the process of generation of perturbations in this scenario.
We study cosmological perturbations in two-field inflation, allowing for non-standard kinetic terms. We calculate analytically the spectra of curvature and isocurvature modes at Hubble crossing, up to first order in the slow-roll parameters. We also compute numerically the evolution of the curvature and isocurvature modes from well within the Hubble radius until the end of inflation. We show explicitly for a few examples, including the recently proposed model of `roulette inflation, how isocurvature perturbations affect significantly the curvature perturbation between Hubble crossing and the end of inflation.
We consider the four-dimensional effective field theory which has been used in previous studies of perturbations in the Ekpyrotic Universe, and discuss the spectrum of cosmological fluctuations induced on large scales by quantum fluctuations of the b ulk brane. By matching cosmological fluctuations on a constant energy density hypersurface we show that the growing mode during the very slow collapsing pre-impact phase couples only to the decaying mode in the expanding post-impact phase, and that hence no scale-invariant spectrum of adiabatic fluctuations is generated. Note that our conclusions may not apply to improved toy models for the Ekpyrotic scenario.
A period of slow contraction with equation of state w > 1, known as an ekpyrotic phase, has been shown to flatten and smooth the universe if it begins the phase with small perturbations. In this paper, we explore how robust and powerful the ekpyrotic smoothing mechanism is by beginning with highly inhomogeneous and anisotropic initial conditions and numerically solving for the subsequent evolution of the universe. Our studies, based on a universe with gravity plus a scalar field with a negative exponential potential, show that some regions become homogeneous and isotropic while others exhibit inhomogeneous and anisotropic behavior in which the scalar field behaves like a fluid with w=1. We find that the ekpyrotic smoothing mechanism is robust in the sense that the ratio of the proper volume of the smooth to non-smooth region grows exponentially fast along time slices of constant mean curvature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا