ﻻ يوجد ملخص باللغة العربية
Strictly finite-range (SFR) potentials are exactly zero beyond their finite range. Single-particle energies and densities as well as S-matrix pole trajectories are studied in a few SFR potentials suited for the description of neutrons interacting with light and heavy nuclei. The SFR potentials considered are the standard cut-off Woods--Saxon (CWS) potentials and two potentials approaching zero smoothly: the SV potential introduced by Salamon and Vertse and the SS potential of Sahu and Sahu. The parameters of these latter were set so that the potentials may be similar to the CWS shape. The range of the SV and SS potentials scales with the cube root of the mass number of the core like the nuclear radius itself. For light nuclei a single term of the SV potential (with a single parameter) is enough for a good description of the neutron-nucleus interaction. The trajectories are compared with a bench-mark for which the starting points (belonging to potential depth zero) can be determined independently. Even the CWS potential is found to conform to this bench-mark if the range is identified with the cutoff radius. For the CWS potentials some trajectories show irregular shapes, while for the SV and SS potentials all trajectories behave regularly.
Recent BNL and Jlab data provided new evidence on two nucleon correlations (2NC) in nuclei. The data confirm the validity of the convolution model, describing the spectral function (SF) of a correlated pair moving in the mean field with high and low
Following the idea of nucleon clustering and light-nuclei production in relativistic heavy-ion collisions close to the QCD critical-end point, we address the quantum effects affecting the interaction of several nucleons at finite temperature. For thi
We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 <
High-energy scattering processes, such as deep inelastic scattering (DIS) and quasielastic (QE) scattering provide a wealth of information about the structure of atomic nuclei. The remarkable discovery of the empirical linear relationship between the
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in pa