ﻻ يوجد ملخص باللغة العربية
We study the nature of the u=5/2 quantum Hall state in wide quantum wells under the mixing of electronic subbands and Landau levels. We introduce a general method to analyze the Moore-Read Pfaffian state and its particle-hole conjugate, the anti-Pfaffian, under periodic boundary conditions in a quartered Brillouin zone scheme containing both even and odd numbers of electrons. We examine the rotational quantum numbers on the torus, and show spontaneous breaking of the particle-hole symmetry can be observed in finite-size systems. In the presence of electronic-subband and Landau-level mixing the particle-hole symmetry is broken in such a way that the anti-Pfaffian is unambiguously favored, and becomes more robust in the vicinity of a transition to the compressible phase, in agreement with recent experiments.
The nature of the fractional quantum Hall effect at $ u=1/2$ observed in wide quantum wells almost three decades ago is still under debate. Previous studies have investigated it by the variational Monte Carlo method, which makes the assumption that t
We report a reliable method to estimate the disorder broadening parameter from the scaling of the gaps of the even and major odd denominator fractional quantum Hall states of the second Landau level. We apply this technique to several samples of vast
We investigate the nature of the fractional quantum Hall (FQH) state at filling factor $ u=13/5$, and its particle-hole conjugate state at $12/5$, with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scal
We investigate the finite frequency noise of a quantum point contact at filling factor { u} = 5/2 using a weakly coupled resonant LC circuit as a detector. We show how one could spectroscopically address the fractional charged excitations inspecting
We report quantitative measurements of the impact of alloy disorder on the $ u=5/2$ fractional quantum Hall state. Alloy disorder is controlled by the aluminum content $x$ in the Al$_x$Ga$_{1-x}$As channel of a quantum well. We find that the $ u=5/2$