ﻻ يوجد ملخص باللغة العربية
We investigate the finite frequency noise of a quantum point contact at filling factor { u} = 5/2 using a weakly coupled resonant LC circuit as a detector. We show how one could spectroscopically address the fractional charged excitations inspecting separately their charge and scaling dimensions. We thus compare the behaviour of the Pfaffian and the anti-Pfaffian non-Abelian edge states models in order to give possible experimental signatures to identify the appropriate model for this fractional quantum Hall states. Finally we investigate how the temperature of the LC resonant circuit can be used in order to enhance the sensibility of the measurement scheme.
We investigate the nature of the fractional quantum Hall (FQH) state at filling factor $ u=13/5$, and its particle-hole conjugate state at $12/5$, with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scal
We study the nature of the u=5/2 quantum Hall state in wide quantum wells under the mixing of electronic subbands and Landau levels. We introduce a general method to analyze the Moore-Read Pfaffian state and its particle-hole conjugate, the anti-Pfa
We report a reliable method to estimate the disorder broadening parameter from the scaling of the gaps of the even and major odd denominator fractional quantum Hall states of the second Landau level. We apply this technique to several samples of vast
Parafermions are non-Abelian anyons which generalize Majorana fermions and hold great promise for topological quantum computation. We study the braiding of $mathbb{Z}_{2n}$ parafermions which have been predicted to emerge as bound states in fractiona
The nature of the fractional quantum Hall effect at $ u=1/2$ observed in wide quantum wells almost three decades ago is still under debate. Previous studies have investigated it by the variational Monte Carlo method, which makes the assumption that t