ترغب بنشر مسار تعليمي؟ اضغط هنا

A Common Proper Motion Stellar Companion to HAT-P-7

133   0   0.0 ( 0 )
 نشر من قبل Norio Narita
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report that HAT-P-7 has a common proper motion stellar companion. The companion is located at $sim3.9$ arcsec to the east and estimated as an M5.5V dwarf based on its colors. We also confirm the presence of the third companion, which was first reported by Winn et al. (2009), based on long-term radial velocity measurements. We revisit the migration mechanism of HAT-P-7b given the presence of those companions, and propose sequential Kozai migration as a likely scenario in this system. This scenario may explain the reason for an outlier in the discussion of the spin-orbit alignment timescale for HAT-P-7b by Albrecht et al. (2012).



قيم البحث

اقرأ أيضاً

We announce the identification of a proper motion companion to the star HII 1348, a K5V member of the Pleiades open cluster. The existence of a faint point source 1.1arcsec away from HII 1348 was previously known from adaptive optics imaging by Bouvi er et al. However, because of a high likelihood of background star contamination and in the absence of follow-up astrometry, Bouvier et al. tentatively concluded that the candidate companion was not physically associated with HII 1348. We establish the proper motion association of the pair from adaptive optics imaging with the Palomar 5m telescope. Adaptive optics spectroscopy with the integral field spectrograph OSIRIS on the Keck 10m telescope reveals that the companion has a spectral type of M8pm1. According to substellar evolution models, the M8 spectral type resides within the substellar mass regime at the age of the Pleiades. The primary itself is a known double-lined spectroscopic binary, which makes the resolved companion, HII 1348B, the least massive and widest component of this hierarchical triple system and the first substellar companion to a stellar primary in the Pleiades.
We present results of direct imaging observations for HAT-P-7 taken with the Subaru HiCIAO and the Calar Alto AstraLux. Since the close-in transiting planet HAT-P-7b was reported to have a highly tilted orbit, massive bodies such as giant planets, br own dwarfs, or a binary star are expected to exist in the outer region of this system. We show that there are indeed two candidates for distant faint stellar companions around HAT-P-7. We discuss possible roles played by such companions on the orbital evolution of HAT-P-7b. We conclude that as there is a third body in the system as reported by Winn et al. (2009, ApJL, 763, L99), the Kozai migration is less likely while planet-planet scattering is possible.
196 - G. A. Bakos 2010
We report the discovery of four relatively massive (2-7MJ) transiting extrasolar planets. HAT-P-20b orbits a V=11.339 K3 dwarf star with a period P=2.875317+/-0.000004d. The host star has a mass of 0.760+/-0.03 Msun, radius of 0.690+/-0.02 Rsun, Teff =4595+/-80 K, and metallicity [Fe/H]=+0.35+/-0.08. HAT-P-20b has a mass of 7.246+/-0.187 MJ, and radius of 0.867+/-0.033 RJ yielding a mean density of 13.78+/-1.50 gcm^-3 , which is the second highest value among all known exoplanets. HAT-P-21b orbits a V=11.685 G3 dwarf on an eccentric (e=0.2280+/-0.016) orbit, with a period of P=4.1244810+/-000007d. The host star has a mass of 0.95+/-0.04Msun, radius of 1.10+/-0.08Rsun, Teff=5588+/-80K, and [Fe/H]=+0.01+/-0.08. HAT-P-21b has a mass of 4.063+/-0.161MJ, and radius of 1.024+/-0.092RJ. HAT-P-22b orbits the V=9.732 G5 dwarf HD233731, with P=3.2122200+/-0.000009d. The host star has a mass of 0.92+/-0.03Msun, radius of 1.04+/-0.04Rsun, Teff=5302+/-80K, and metallicity of +0.24+/-0.08. The planet has a mass of 2.147+/-0.061 MJ, and compact radius of 1.080+/-0.058RJ. The host star also harbors an M-dwarf companion at a wide separation. Finally, HAT-P-23b orbits a V=12.432 G0 dwarf star, with a period P=1.212884+/-0.000002d. The host star has a mass of 1.13+/-0.04sun, radius of 1.20+/-0.07Rsun, Teff=5905+/-80K, and [Fe/H]=+0.15+/-0.04. The planetary companion has a mass of 2.090+/-0.111MJ, and radius of 1.368+/-0.090RJ (abridged).
The exquisite photometry of Kepler has revealed reflected light from exoplanets, tidal distortion of host stars and Doppler beaming of a stars light due to its motion (Borucki 2016; Demory et al. 2012; Welsh et al. 2010; Bloemen et al. 2012). Esteves et al. (2013, 2015) and Shporer et al. (2014) reported additional odd harmonics in the light curves of two hot Jupiters: HAT-P-7b and Kepler-13Ab. They measured non-zero power at three times the orbital frequency that persisted while the planet was eclipsed and hence must originate in the star (Esteves et al. 2015). Penoyre & Sandford (2018) showed that orbital eccentricity could result in time-dependent tidal deformation of the star that manifests itself at three times the orbital frequency and suggested this could be the origin of the measured odd modes. In this Research Note, we show that the small orbital eccentricities of HAT-P-7b and Kepler-13Ab cannot generate the odd harmonics observed in these systems. Esteves et al. (2015) hypothesized that the odd modes could be due to tidal distortion of the star if its spin is misaligned with the systems orbital motion, as is the case in both of these systems (Benomar et al. 2014; Herman et al. 2018), but this mechanism has yet to be verified theoretically or numerically.
112 - A. Poveda , C. Allen , R. Costero 2009
We have made a search for common proper motion (CPM) companions to the wide binaries in the solar vicinity. We found that the binary GJ 282AB has a very distant CPM companion (NLTT 18149) at a separation $s=1.09 arcdeg$. Improved spectral types and r adial velocities are obtained, and ages determined for the three components. The Hipparcos trigonometric parallaxes and the new radial velocities and ages turn out to be very similar for the three stars, and provide strong evidence that they form a physical system. At a projected separation of 55733AU from GJ 282AB, NLTT 18149 ranks among the widest physical companions known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا