ترغب بنشر مسار تعليمي؟ اضغط هنا

A Substellar Common Proper Motion Companion to the Pleiad HII 1348

254   0   0.0 ( 0 )
 نشر من قبل Kerstin Gei{\\ss}ler
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We announce the identification of a proper motion companion to the star HII 1348, a K5V member of the Pleiades open cluster. The existence of a faint point source 1.1arcsec away from HII 1348 was previously known from adaptive optics imaging by Bouvier et al. However, because of a high likelihood of background star contamination and in the absence of follow-up astrometry, Bouvier et al. tentatively concluded that the candidate companion was not physically associated with HII 1348. We establish the proper motion association of the pair from adaptive optics imaging with the Palomar 5m telescope. Adaptive optics spectroscopy with the integral field spectrograph OSIRIS on the Keck 10m telescope reveals that the companion has a spectral type of M8pm1. According to substellar evolution models, the M8 spectral type resides within the substellar mass regime at the age of the Pleiades. The primary itself is a known double-lined spectroscopic binary, which makes the resolved companion, HII 1348B, the least massive and widest component of this hierarchical triple system and the first substellar companion to a stellar primary in the Pleiades.



قيم البحث

اقرأ أيضاً

We report that HAT-P-7 has a common proper motion stellar companion. The companion is located at $sim3.9$ arcsec to the east and estimated as an M5.5V dwarf based on its colors. We also confirm the presence of the third companion, which was first rep orted by Winn et al. (2009), based on long-term radial velocity measurements. We revisit the migration mechanism of HAT-P-7b given the presence of those companions, and propose sequential Kozai migration as a likely scenario in this system. This scenario may explain the reason for an outlier in the discussion of the spin-orbit alignment timescale for HAT-P-7b by Albrecht et al. (2012).
We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companio ns in the Pleiades and young moving groups. The companion has a projected separation of 0.49 +/- 0.02 (66 +/- 2 AU) and a mass of 68 +/- 5 M_J based on three observations in the J-, H-, and K_S-band. The spectral type is estimated to be M7 (~2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0 +26.1/-8.8 %. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.
119 - A. Poveda , C. Allen , R. Costero 2009
We have made a search for common proper motion (CPM) companions to the wide binaries in the solar vicinity. We found that the binary GJ 282AB has a very distant CPM companion (NLTT 18149) at a separation $s=1.09 arcdeg$. Improved spectral types and r adial velocities are obtained, and ages determined for the three components. The Hipparcos trigonometric parallaxes and the new radial velocities and ages turn out to be very similar for the three stars, and provide strong evidence that they form a physical system. At a projected separation of 55733AU from GJ 282AB, NLTT 18149 ranks among the widest physical companions known.
Studies of fundamental parameters of very low-mass objects are indispensable to provide tests of stellar evolution models that are used to derive theoretical masses of brown dwarfs and planets. However, only objects with dynamically determined masses and precise photometry can effectively evaluate the predictions of stellar models. AB Dor C (0.090 solar masses) has become a prime benchmark for calibration of theoretical evolutionary models of low-mass young stars. One of the ambiguities remaining in AB Dor C is the possible binary nature of this star. We observed AB Dor C with the VLTI/AMBER instrument in low-resolution mode at the J, H and K bands. The interferometric observables at the K-band are compatible with a binary brown dwarf system with tentative components AB Dor Ca/Cb with a K-band flux ratio of 5$pm$1% and a separation of 38$pm$1 mas. This implies theoretical masses of 0.072$pm$0.013 M$_{rm odot}$ and 0.013$pm$0.001 M$_{rm odot}$ for each component, near the hydrogen-burning limit for AB Dor Ca, and near the deuterium-burning limit, straddling the boundary between brown dwarfs and giant planets, for AB Dor Cb. The possible binarity of AB Dor C alleviates the disagreement between observed magnitudes and theoretical mass-luminosity relationships.
We report a late M-type, common proper motion companion to a nearby young visual binary HIP 115147 (V368 Cep), separated by 963 arcseconds from the primary K0 dwarf. This optically dim star has been identified as a candidate high proper motion, nearb y dwarf LSPM J2322+7847 by L{e}pine in 2005. The wide companion is one of the latest post-T Tauri low mass stars found within 20 pc. We obtain a trigonometric parallax of $51.6pm0.8$ mas, in good agreement with the Hipparcos parallax of the primary star ($50.7pm0.6$ mas). Our $BVRI$ photometric data and near-infrared data from 2MASS are consistent with LSPM J2322+7847 being brighter by 1 magnitude in $K_s$ than field M dwarfs at $V-K_s=6.66$, which indicates its pre-main sequence status. We conclude that the most likely age of the primary HIP 115147 and its 11-arcsecond companion HIP 115147B is 20-50 Myr. The primary appears to be older than its close analog PZ Tel (age 12-20 Myr) and members of the TWA association (7 Myr).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا