ترغب بنشر مسار تعليمي؟ اضغط هنا

Inability to find justification of a $k_T$-factorization formula by following chains of citations

81   0   0.0 ( 0 )
 نشر من قبل John Collins
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fundamental to much work in small-x QCD is a k_T-factorization formula. Normal expectations in theoretical physics are that when such a result is used, citations should be given to where the formula is justified. We demonstrate by examining the chains of citations back from current work that violations of this expectation are widespread, to the extent that following the citation chains, we do not find a proof or other justification of the formula. This shows a substantial deficit in the reproducibility of a phenomenologically important area of research. Since the published formulae differ in normalization, we test them by making a derivation in a simple model that obeys the assumptions that are stated in the literature to be the basis of k_T-factorization in the small-$x$ regime. We find that we disagree with two of the standard normalizations.

قيم البحث

اقرأ أيضاً

78 - F. Feng , J.P. Ma , Q. Wang 2009
In the $k_T$-factorization for exclusive processes, the nontrivial $k_T$-dependence of perturbative coefficients, or hard parts, is obtained by taking off-shell partons. This brings up the question of whether the $k_T$-factorization is gauge invarian t. We study the $k_T$-factorization for the case $pi gamma^* to gamma$ at one-loop in a general covariant gauge. Our results show that the hard part contains a light-cone singularity that is absent in the Feynman gauge, which indicates that the $k_T$-factorization is {it not} gauge invariant. These divergent contributions come from the $k_T$-dependent wave function of $pi$ and are not related to a special process. Because of this fact the $k_T$-factorization for any process is not gauge invariant and is violated. Our study also indicates that the $k_T$-factorization used widely for exclusive B-decays is not gauge invariant and is violated.
104 - J. Bartels 2007
We discuss the inclusive production of jets in the central region of rapidity in the context of k_T-factorization at next-to-leading order (NLO). Calculations are performed in the Regge limit making use of the NLO BFKL results. We introduce a jet con e definition and carry out a proper phase--space separation into multi-Regge and quasi-multi-Regge kinematic regions. We discuss two situations: scattering of highly virtual photons, which requires a symmetric energy scale to separate impact factors from the gluon Greens function, and hadron-hadron collisions, where a non-symmetric scale choice is needed.
We compare the theoretical status and the numerical predictions of two approaches for heavy quark production in the high energy hadron collisions, namely the conventional LO parton model with collinear approximation and $k_T$-factorization approach. The main assumptions used in the calculations are discussed. To extract the differences coming from the matrix elements we use very simple gluon structure function and fixed coupling. It is shown that the $k_T$-factorization approach calculated formally in LO and with Sudakov form factor accounts for many contributions related usually to NLO (and even NNLO) processes of the conventional parton model
81 - Benjamin Guiot 2018
We analyze two consequences of the relationship between collinear factorization and $k_t$-factorization. First, we show that the $k_t$-factorization gives a fundamental justification for the choice of the hard scale $Q^2$ done in the collinear factor ization. Second, we show that in the collinear factorization there is an uncertainty on this choice which will not be reduced by higher orders. This uncertainty is absent within the $k_t$-factorization formalism.
It has been pointed out that the recent BaBar data on the pi gamma^* -> gamma transition form factor F_{pi gamma}(Q^2) at low (high) momentum transfer squared Q^2 indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictor y observations can be reconciled in the k_T factorization theorem: the increase of the measured Q^2F_{pi gamma}(Q^2) for Q^2 > 10 GeV^2 is explained by convoluting a k_T dependent hard kernel with a flat pion distribution amplitude, k_T being a parton transverse momentum. The low Q^2 data are accommodated by including the resummation of alpha_s ln^2x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q^2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا