ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-independent test of gravity with a network of ground-based gravitational-wave detectors

242   0   0.0 ( 0 )
 نشر من قبل Kazuhiro Hayama
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observation of gravitational waves with a global network of interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will make it possible to probe into the nature of space-time structure. Besides Einsteins general theory of relativity, there are several theories of gravitation that passed experimental tests so far. The gravitational-wave observation provides a new experimental test of alternative theories of gravity because a gravitational wave may have at most six independent modes of polarization, of which properties and number of modes are dependent on theories of gravity. This paper proposes a method to reconstruct the independent modes of polarization in time-series data of an advanced detector network. Since the method does not rely on any specific model, it gives model-independent test of alternative theories of gravity.



قيم البحث

اقرأ أيضاً

64 - Wen Zhao , Tan Liu , Linqing Wen 2019
Gravitational wave (GW) data can be used to test the parity symmetry of gravity by investigating the difference between left-hand and right-hand circular polarization modes. In this article, we develop a method to decompose the circular polarizations of GWs produced during the inspiralling stage of compact binaries, with the help of stationary phase approximation. The foremost advantage is that this method is simple, clean, independent of GW waveform, and is applicable to the existing detector network. Applying it to the mock data, we test the parity symmetry of gravity by constraining the velocity birefringence of GWs. If a nearly edge-on binary neutron-stars with observed electromagnetic counterparts at 40 Mpc is detected by the second-generation detector network, one could derive the model-independent test on the parity symmetry in gravity: the lower limit of the energy scale of parity violation can be constrained within $mathcal{O}(10^4{rm eV})$.
There exist six possible polarization modes of gravitational waves in general metric theory of gravity, while two tensor polarization modes are allowed in general relativity. The properties and number of polarization modes depend on gravity theories. The number of the detectors needs to be equal to the number of the polarization modes of the gravitational waves for separation of polarizations basically. However, a single detector having great sensitivity at lower frequency could be effectively regarded as a virtual detector network including a set of detectors along its trajectory due to a long GW signal from a compact binary and the Earths rotation. Thus, time-varying antenna pattern functions can help testing the polarizations of gravitational waves. We study the effects of the Earths rotation on the polarization test and show a possibility to test the non-tensorial polarization modes from future observations of compact binary mergers with ground-based gravitational detectors such as Einstein telescope and Cosmic Explorer.
The direct detection of gravitational waves will provide valuable astrophysical information about many celestial objects. The SCHENBERG has already undergone its first test run. It is expected to have its first scientific run soon. In this work a new data analysis approach is presented, called method of independent bars, which can be used with SCHENBERGs data . We test this method through the simulation of the detection of gravitational waves. With this method we find the sources direction without the need to have all six transducers operational. Also we show that the method is a generalization of another one, already described in the literature, known as the mode channels method.
Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the ana lysis of data from the first generation of ground-based gravitational wave interferometers have used different strategies for the suppression of non-Gaussian noise transients, and targeted different regions of the binary black hole parameter space. In this paper we compare the sensitivity of three such algorithms: matched filtering with full coalescence templates, matched filtering with ringdown templates and a morphology-independent excess power search. The comparison is performed at a fixed false alarm rate and relies on Monte-carlo simulations of binary black hole coalescences for spinning, non-precessing systems with total mass 25-350 solar mass, which covers the parameter space of stellar mass and intermediate mass black hole binaries. We find that in the mass range of 25 -100 solar mass the sensitive distance of the search, marginalized over source parameters, is best with matched filtering to full waveform templates, to within 10 percent at a false alarm rate of 3 events per year. In the mass range of 100-350 solar mass, the same comparison favors the morphology-independent excess power search to within 20 percent. The dependence on mass and spin is also explored.
Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors to perform a spectroscopic analysis of signal s emitted during the ringdown of the final Kerr black-hole formed by a stellar mass binary black-hole merger. If we assume an optimistic rate of 240 Gpc$^{-3}$yr$^{-1}$, about 3 events per year can be measured by Advanced LIGO. Further, upgrades to the existing LIGO detectors will increase the odds of measuring multiple ringdown modes significantly. New ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in about thousand events per year. We perform Monte-Carlo injections of $10^{6}$ binary black-hole mergers in a search volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based detector models. We assume a uniform random distribution in component masses of the progenitor binaries, sky positions and orientations to investigate the fraction of the population that satisfy our criteria for detectability and resolvability of multiple ringdown modes. We investigate the detectability and resolvability of the sub-dominant modes $l=m=3$, $l=m=4$ and $l=2, m=1$. Our results indicate that the modes with $l=m=3$ and $l=2, m=1$ are the most promising candidates for sub-dominant mode measurability. We find that for stellar mass black-hole mergers, resolvability is not a limiting criteria for these modes. We emphasize that the measurability of the $l=2, m=1$ mode is not impeded by the resolvability criterion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا