ﻻ يوجد ملخص باللغة العربية
Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the final Kerr black-hole formed by a stellar mass binary black-hole merger. If we assume an optimistic rate of 240 Gpc$^{-3}$yr$^{-1}$, about 3 events per year can be measured by Advanced LIGO. Further, upgrades to the existing LIGO detectors will increase the odds of measuring multiple ringdown modes significantly. New ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in about thousand events per year. We perform Monte-Carlo injections of $10^{6}$ binary black-hole mergers in a search volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based detector models. We assume a uniform random distribution in component masses of the progenitor binaries, sky positions and orientations to investigate the fraction of the population that satisfy our criteria for detectability and resolvability of multiple ringdown modes. We investigate the detectability and resolvability of the sub-dominant modes $l=m=3$, $l=m=4$ and $l=2, m=1$. Our results indicate that the modes with $l=m=3$ and $l=2, m=1$ are the most promising candidates for sub-dominant mode measurability. We find that for stellar mass black-hole mergers, resolvability is not a limiting criteria for these modes. We emphasize that the measurability of the $l=2, m=1$ mode is not impeded by the resolvability criterion.
Searches for gravitational-wave transients from binary black hole coalescences typically rely on one of two approaches: matched filtering with templates and morphology-independent excess power searches. Multiple algorithmic implementations in the ana
There exist six possible polarization modes of gravitational waves in general metric theory of gravity, while two tensor polarization modes are allowed in general relativity. The properties and number of polarization modes depend on gravity theories.
We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling
Since gravitational and electromagnetic waves from a compact binary coalescence carry independent information about the source, the joint observation is important for understanding the physical mechanisms of the emissions. Rapid detection and source
We present a systematic comparison of the binary black hole (BBH) signal waveform reconstructed by two independent and complementary approaches used in LIGO and Virgo source inference: a template-based analysis, and a morphology-independent analysis.