ترغب بنشر مسار تعليمي؟ اضغط هنا

Stretchable liquid crystal blue phase gels

336   0   0.0 ( 0 )
 نشر من قبل Flynn Castles
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Liquid crystalline polymers are materials of considerable scientific interest and technological value to society [1-3]. An important subset of such materials exhibit rubber-like elasticity; these can combine the remarkable optical properties of liquid crystals with the favourable mechanical properties of rubber and, further, exhibit behaviour not seen in either type of material independently [2]. Many of their properties depend crucially on the particular mesophase employed. Stretchable liquid crystalline polymers have previously been demonstrated in the nematic, chiral nematic, and smectic mesophases [2,4]. Here were report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that may have its optical properties manipulated by an applied strain and, further, remains electro-optically switchable under a moderate applied voltage. We find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and new possibilities for low-voltage electro-optic devices.



قيم البحث

اقرأ أيضاً

We investigate numerically the behaviour of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, $chi$, setting the balance between inter facial and elastic forces. When $chi$ and the concentration of the isotropic component are both low, the blue phase disclination lattice templates a cubic array of fluid cylinders. For larger $chi$, the isotropic phase arranges primarily into liquid emulsion droplets which coarsen very slowly, rewiring the blue phase disclination lines into an amorphous elastic network. Our blue phase/simple fluid composites can be externally manipulated: an electric field can trigger a morphological transition between cubic fluid cylinder phases with different topologies.
Blue phase liquid crystals are not usually considered to exhibit a flexoelectrooptic effect, due to the polar nature of flexoelectric switching and the cubic or amorphous structure of blue phases. Here, we derive the form of the flexoelectric contrib ution to the Kerr constant of blue phases, and experimentally demonstrate and measure the separate contributions to the Kerr constant arising from flexoelectric and dielectric effects. Hence, a non-polar flexoelectrooptic effect is demonstrated in blue phase liquid crystals, which will have consequences for the engineering of novel blue-phase electrooptic technology.
We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distanc e, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature {bf 409}, 692 (2001)] that, even with no evidences of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas--low-density liquid (LDL) critical point, and the other in a gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the 3-parameter space of the soft-core potential and we perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.
Spontaneous onset of a low temperature topologically ordered phase in a 2-dimensional (2D) lattice model of uniaxial liquid crystal (LC) was debated extensively pointing to a suspected underlying mechanism affecting the RG flow near the topological f ixed point. A recent MC study clarified that a prior crossover leads to a transition to nematic phase. The crossover was interpreted as due to the onset of a perturbing relevant scaling field originating from the extra spin degree of freedom. As a counter example and in support of this hypothesis, we now consider V-shaped bent-core molecules with rigid rod-like segments connected at an assigned angle. The two segments of the molecule interact with the segments of all the nearest neighbours on a square lattice, prescribed by a biquadratic interaction. We compute equilibrium averages of different observables with Monte Carlo techniques as a function of temperature and sample size. For the chosen molecular bend angle and symmetric inter-segment interaction between neighbouirng molecules, the 2D system shows two transitions as a function of T: the higher one at T1 leads to a topological ordering of defects associated with the major molecular axis without a crossover, imparting uniaxial symmetry to the medium described by the first fundamental group of the order parameter space $pi_{1}$= $Z_{2}$ (inversion symmetry). The second at T2 leads to a medium displaying biaxial symmetry with $pi_{1}$ = Q (quaternion group). The biaxial phase shows a self-similar microscopic structure with the three axes showing power law correlations with vanishing exponents as the temperature decreases.
Topological photonics harnesses the physics of topological insulators to control the behavior of light. Photonic modes robust against material imperfections are an example of such control. In this work, we propose a soft-matter platform based on nema tic liquid crystals that supports photonic topological insulators. The orientation of liquid crystal molecules introduces an extra geometric degree of freedom which in conjunction with suitably designed structural properties, leads to the creation of topologically protected states of light. The use of soft building blocks potentially allows for reconfigurable systems that exploit the interplay between light and the soft responsive medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا