ﻻ يوجد ملخص باللغة العربية
Liquid crystalline polymers are materials of considerable scientific interest and technological value to society [1-3]. An important subset of such materials exhibit rubber-like elasticity; these can combine the remarkable optical properties of liquid crystals with the favourable mechanical properties of rubber and, further, exhibit behaviour not seen in either type of material independently [2]. Many of their properties depend crucially on the particular mesophase employed. Stretchable liquid crystalline polymers have previously been demonstrated in the nematic, chiral nematic, and smectic mesophases [2,4]. Here were report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that may have its optical properties manipulated by an applied strain and, further, remains electro-optically switchable under a moderate applied voltage. We find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and new possibilities for low-voltage electro-optic devices.
We investigate numerically the behaviour of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, $chi$, setting the balance between inter
Blue phase liquid crystals are not usually considered to exhibit a flexoelectrooptic effect, due to the polar nature of flexoelectric switching and the cubic or amorphous structure of blue phases. Here, we derive the form of the flexoelectric contrib
We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distanc
Spontaneous onset of a low temperature topologically ordered phase in a 2-dimensional (2D) lattice model of uniaxial liquid crystal (LC) was debated extensively pointing to a suspected underlying mechanism affecting the RG flow near the topological f
Topological photonics harnesses the physics of topological insulators to control the behavior of light. Photonic modes robust against material imperfections are an example of such control. In this work, we propose a soft-matter platform based on nema