ترغب بنشر مسار تعليمي؟ اضغط هنا

Liquid-crystal-based topological photonics

79   0   0.0 ( 0 )
 نشر من قبل Michel Fruchart
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological photonics harnesses the physics of topological insulators to control the behavior of light. Photonic modes robust against material imperfections are an example of such control. In this work, we propose a soft-matter platform based on nematic liquid crystals that supports photonic topological insulators. The orientation of liquid crystal molecules introduces an extra geometric degree of freedom which in conjunction with suitably designed structural properties, leads to the creation of topologically protected states of light. The use of soft building blocks potentially allows for reconfigurable systems that exploit the interplay between light and the soft responsive medium.

قيم البحث

اقرأ أيضاً

Topological photonics has emerged as a novel route to engineer the flow of light. Topologically-protected photonic edge modes, which are supported at the perimeters of topologically-nontrivial insulating bulk structures, have been of particular inter est as they may enable low-loss optical waveguides immune to structural disorder. Very recently, there is a sharp rise of interest in introducing gain materials into such topological photonic structures, primarily aiming at revolu-tionizing semiconductor lasers with the aid of physical mechanisms existing in topological physics. Examples of re-markable realizations are topological lasers with unidirectional light output under time-reversal symmetry breaking and topologically-protected polariton and micro/nano-cavity lasers. Moreover, the introduction of gain and loss provides a fascinating playground to explore novel topological phases, which are in close relevance to non-Hermitian and parity-time symmetric quantum physics and are in general difficult to access using fermionic condensed matter systems. Here, we review the cutting-edge research on active topological photonics, in which optical gain plays a pivotal role. We discuss recent realizations of topological lasers of various kinds, together with the underlying physics explaining the emergence of topological edge modes. In such demonstrations, the optical modes of the topological lasers are deter-mined by the dielectric structures and support lasing oscillation with the help of optical gain. We also address recent researches on topological photonic systems in which gain and loss themselves essentially influence on topological prop-erties of the bulk systems. We believe that active topological photonics provides powerful means to advance mi-cro/nanophotonics systems for diverse applications and topological physics itself as well.
Spontaneous onset of a low temperature topologically ordered phase in a 2-dimensional (2D) lattice model of uniaxial liquid crystal (LC) was debated extensively pointing to a suspected underlying mechanism affecting the RG flow near the topological f ixed point. A recent MC study clarified that a prior crossover leads to a transition to nematic phase. The crossover was interpreted as due to the onset of a perturbing relevant scaling field originating from the extra spin degree of freedom. As a counter example and in support of this hypothesis, we now consider V-shaped bent-core molecules with rigid rod-like segments connected at an assigned angle. The two segments of the molecule interact with the segments of all the nearest neighbours on a square lattice, prescribed by a biquadratic interaction. We compute equilibrium averages of different observables with Monte Carlo techniques as a function of temperature and sample size. For the chosen molecular bend angle and symmetric inter-segment interaction between neighbouirng molecules, the 2D system shows two transitions as a function of T: the higher one at T1 leads to a topological ordering of defects associated with the major molecular axis without a crossover, imparting uniaxial symmetry to the medium described by the first fundamental group of the order parameter space $pi_{1}$= $Z_{2}$ (inversion symmetry). The second at T2 leads to a medium displaying biaxial symmetry with $pi_{1}$ = Q (quaternion group). The biaxial phase shows a self-similar microscopic structure with the three axes showing power law correlations with vanishing exponents as the temperature decreases.
The study of topological phases of light suggests novel opportunities for creating robust optical structures and on-chip photonic devices which are immune against scattering losses and structural disorder. However, many recent demonstrations of topol ogical effects in optics employ structures with relatively large scales. Here we discuss the physics and realisation of topological photonics on small scales, with the dimensions often smaller or comparable with the wavelength of light. We highlight the recent experimental demonstrations of small-scale topological states based on arrays of resonant nanoparticles and discuss a novel photonic platform employing higher-order topological effects for creating subwavelength highly efficient topologically protected optical cavities. We pay a special attention to the recent progress on topological polaritonic structures and summarize with our vision on the future directions of nanoscale topological photonics and its impact on other fields.
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond qua ntum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.
Graphene is only one atom thick, optically transparent, chemically inert and an excellent conductor. These properties seem to make this material an excellent candidate for applications in various photonic devices that require conducting but transpare nt thin films. In this letter we demonstrate liquid crystal devices with electrodes made of graphene which show excellent performance with a high contrast ratio. We also discuss the advantages of graphene compared to conventionally-used metal oxides in terms of low resistivity, high transparency and chemical stability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا