ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the quenching of star formation activity from the evolution of the colour-magnitude relation in VIPERS

77   0   0.0 ( 0 )
 نشر من قبل Giorgio Manzoni
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of the colour-magnitude relation for galaxies in the VIMOS Public Extragalactic Redshift Survey (VIPERS) by introducing the concept of the bright edge, and use this to derive constraints on the quenching of star formation activity in galaxies over the redshift range $0.5 < z < 1.1$. The bright-edge of the colour-magnitude diagram evolves with little dependence on galaxy colour, and therefore on the amount of star formation taking place in bright galaxies. We modelled this evolution with delayed exponential star formation histories (SFHs), to better understand the time-scale of the turn-off in star formation activity. We show that using SFHs without quenching, the transition from the blue cloud to the red sequence is too slow. This indicates that a scenario purely driven by the consumption of the gas inside each galaxy does not reproduce the observed evolution of the colour-magnitude bright edge. Among the quenching scenarios explored, the one that best matches the observations assumes that galaxies stop their star formation at a randomly selected time with a uniform distribution up to $2.5$ Gyr. We argue that quenching is required over a wide range of stellar masses. Qualitatively similar evolution of the bright edge is found in the predictions of a semi-analytical galaxy formation model, but quantitatively there are marked differences with the observations. This illustrates the utility of the bright edge as a test of galaxy formation models. The evolution changes and no longer matches the observed trend if feedback from heating by active galactic nuclei is turned off.

قيم البحث

اقرأ أيضاً

In this tutorial paper we summarize how the star formation (SF) history of a galactic region can be derived from the colour-magnitude diagram (CMD) of its resolved stars. The procedures to build synthetic CMDs and to exploit them to derive the SF his tories (SFHs) are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. In short: 1) Only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, or gasping, SF regimes; 2) A few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; 3) No galaxy experiencing now its first SF episode has been found yet; 4) No frequent evidence of strong SF bursts is found; 5) There is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.
There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed galaxy downsizing could be interpreted as a halo downsizing, whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a halo downsizing scenario and highlight the significant role of environment quenching in shaping the CSFH.
We investigate the origin of the colour-magnitude relation (CMR) followed by early-type cluster galaxies by using a combination of cosmological N-body simulations of cluster of galaxies and a semi-analytic model of galaxy formation (Lagos, Cora & Pad illa 2008). Results show good agreement between the general trend of the simulated and observed CMR. However, in many clusters, the most luminous galaxies depart from the linear fit to observed data displaying almost constant colours. With the aim of understanding this behaviour, we analyze the dependence with redshift of the stellar mass contributed to each galaxy by different processes, i.e., quiescent star formation, and starburst during major/minor and wet/dry mergers, and disk instability events. The evolution of the metallicity of the stellar component, contributed by each of these processes, is also investigated. We find that the major contribution of stellar mass at low redshift is due to minor dry merger events, being the metallicity of the stellar mass accreted during this process quite low. Thus, minor dry merger events seem to increase the mass of the more luminous galaxies without changing their colours.
[Abridged] We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of environment on the evolution of galaxies between $z=0.5$ and $z=0.9$. We characterise local environment in terms of the density c ontrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the $5^{th}$ nearest neighbour. We find that more massive galaxies tend to reside in higher-density environments over the full redshift range explored. Defining star-forming and passive galaxies through their (NUV$-r$) vs ($r-K$) colours, we then quantify the fraction of star-forming over passive galaxies, $f_{rm ap}$, as a function of environment at fixed stellar mass. $f_{rm ap}$ is higher in low-density regions for galaxies with masses ranging from $log(mathcal{M}/mathcal{M}_odot)=10.38$ (the lowest value explored) to at least $log(mathcal{M}/mathcal{M}_odot)sim11.3$, although with decreasing significance going from lower to higher masses. This is the first time that environmental effects on high-mass galaxies are clearly detected at redshifts as high as $zsim0.9$. We compared these results to VIPERS-like galaxy mock catalogues based on the galaxy formation model of De Lucia & Blaizot. The model correctly reproduces $f_{rm ap}$ in low-density environments, but underpredicts it at high densities. The discrepancy is particularly strong for the lowest-mass bins. We find that this discrepancy is driven by an excess of low-mass passive satellite galaxies in the model. Looking at the accretion history of these model galaxies, i.e. the times when they become satellites, a better (yet not perfect) agreement with observations can be obtained in high density regions by assuming either that a not-negligible fraction of satellites is destroyed, or that their quenching time-scale is longer than $sim 2$ Gyr.
We study the star formation quenching mechanism in cluster galaxies by fitting the SED of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SED are fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies is parametrised using a specific SFH with 2 free parameters, the quenching age QA and the quenching factor QF. These 2 parameters are crucial for the identification of the quenching mechanism which acts on long timescales if starvation while rapid and efficient if ram pressure. To be sensitive to an abrupt and recent variation of the star formation activity, we combine in a new way 20 UV to FIR photometric bands with 3 age-sensitive Balmer line absorption indices extracted from available medium-resolution integrated spectroscopy and with Halpha narrow band imaging data. The use of a truncated SFH significantly increases the quality of the fit in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical QA of the perturbed late-type galaxies is QA < 300 Myr whenever the activity of star formation is reduced by 50% < QF <= 80% and QA < 500 Myr for QF > 80%, while that of the quiescent early-types is QA ~ 1-3 Gyr. The fraction of late-types with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of ~ 5 from the inner half virial radius of the Virgo cluster, where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions. The efficient quenching of the star formation activity observed in Virgo suggests that the dominant stripping process is ram pressure. We discuss the implication of this result in the cosmological context of galaxy evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا