ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental realization of an entanglement filter through the environmental selection

337   0   0.0 ( 0 )
 نشر من قبل Chong Zu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experiment that uses the environmental selection, a key concept in the recent theory of quantum Darwinism, as a mechanism to realize the entanglement filter, a useful quantum information device that filters out certain entangled states. In the experiment, the environment of two qubits is controlled to favor an entangled state and kill other competing components in the input state. The initial state has vanishing entanglement, but the state surviving after interaction with the environment is close to a maximally entangled state, with an entanglement fidelity of $(94.7pm 1.9)%$ measured through the quantum state tomography. We experimentally demonstrate that the generated entanglement is robust under change of the initial state configurations and the environmental parameters.

قيم البحث

اقرأ أيضاً

Encoding a qubit in logical quantum states with wavefunctions characterized by disjoint support and robust energies can offer simultaneous protection against relaxation and pure dephasing. Using a circuit-quantum-electrodynamics architecture, we expe rimentally realize a superconducting $0-pi$ qubit, which hosts protected states suitable for quantum-information processing. Multi-tone spectroscopy measurements reveal the energy level structure of the system, which can be precisely described by a simple two-mode Hamiltonian. We find that the parity symmetry of the qubit results in charge-insensitive levels connecting the protected states, allowing for logical operations. The measured relaxation (1.6 ms) and dephasing times (25 $mu$s) demonstrate that our implementation of the $0-pi$ circuit not only broadens the family of superconducting qubits, but also represents a promising candidate for the building block of a fault-tolerant quantum processor.
We report the experimental implementation of the Dicke model in the semiclassical approximation, which describes a large number of two-level atoms interacting with a single-mode electromagnetic field in a perfectly reflecting cavity. This is managed by making use of two non-linearly coupled active, synthetic LC circuits, implemented by means of analog electrical components. The simplicity and versatility of our platform allows us not only to experimentally explore the coexistence of regular and chaotic trajectories in the Dicke model but also to directly observe the so-called ground-state and excited-state ``quantum phase transitions. In this analysis, the trajectories in phase space, Lyapunov exponents and the recently introduced Out-of-Time-Order-Correlator (OTOC) are used to identify the different operating regimes of our electronic device. Exhaustive numerical simulations are performed to show the quantitative and qualitative agreement between theory and experiment.
129 - K.J. Resch , J.S. Lundeen , 2003
The three-box problem is a gedankenexperiment designed to elucidate some interesting features of quantum measurement and locality. A particle is prepared in a particular superposition of three boxes, and later found in a different (but nonorthogonal) superposition. It was predicted that appropriate weak measurements of particle position in the interval between preparation and post-selection would find the particle in two different places, each with certainty. We verify these predictions in an optical experiment and address the issues of locality and of negative probability.
146 - X.-Y. Chang , Y.-X. Wang , C. Zu 2012
We report an experiment that demonstrates full function of a quantum router using entangled photons, where the paths of a single-photon pulse are controlled in a coherent fashion by polarization of another single photon. Through a projective measurem ent, we prepare the polarization of the control photon in arbitrary superposition states, leading to coherent routing of the target photon in quantum superposition of different paths. We demonstrate quantum nature of this router through optical measurements based on quantum state tomography and show an average fidelity of $(93.24pm 0.23)%$ for the quantum routing operation.
We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated monopole gradually evolves into a spin config uration hosting a Dirac monopole in its synthetic magnetic field. We characterize in detail the Dirac monopole by measuring the particle densities of the spin states projected along different quantization axes. Importantly, we observe the spontaneous emergence of nodal lines in the condensate density that accompany the Dirac monopole. We also demonstrate that the monopole decay accelerates in weaker magnetic field gradients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا