ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of an entanglement-based quantum router

203   0   0.0 ( 0 )
 نشر من قبل Xiuying Chang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an experiment that demonstrates full function of a quantum router using entangled photons, where the paths of a single-photon pulse are controlled in a coherent fashion by polarization of another single photon. Through a projective measurement, we prepare the polarization of the control photon in arbitrary superposition states, leading to coherent routing of the target photon in quantum superposition of different paths. We demonstrate quantum nature of this router through optical measurements based on quantum state tomography and show an average fidelity of $(93.24pm 0.23)%$ for the quantum routing operation.



قيم البحث

اقرأ أيضاً

Shors powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shors algorithm in a photonic system using single photons and employing the non-linearity induced by measurement. For the first time we demonstrate the core processes, coherent control, and resultant entangled states that are required in a full-scale implementation of Shors algorithm. Demonstration of these processes is a necessary step on the path towards a full implementation of Shors algorithm and scalable quantum computing. Our results highlight that the performance of a quantum algorithm is not the same as performance of the underlying quantum circuit, and stress the importance of developing techniques for characterising quantum algorithms.
The heralded generation of entangled states is a long-standing goal in quantum information processing, because it is indispensable for a number of quantum protocols. Polarization entangled photon pairs are usually generated through spontaneous parame tric down-conversion, but the emission is probabilistic. Their applications are generally accompanied by post-selection and destructive photon detection. Here, we report a source of entanglement generated in an event-ready manner by conditioned detection of auxiliary photons. This scheme benefits from the stable and robust properties of spontaneous parametric down-conversion and requires only modest experimental efforts. It is flexible and allows the preparation efficiency to be significantly improved by using beamsplitters with different transmission ratios. We have achieved a fidelity better than 87% and a state preparation efficiency of 45% for the source. This could offer promise in essential photonics-based quantum information tasks, and particularly in enabling optical quantum computing by reducing dramatically the computational overhead.
We report the experimental transformation of quadrature entanglement between two optical beams into continuous variable polarization entanglement. We extend the inseparability criterion proposed by Duan, et al. [Duan00] to polarization states and use it to quantify the entanglement between the three Stokes operators of the beams. We propose an extension to this scheme utilizing two quadrature entangled pairs for which all three Stokes operators between a pair of beams are entangled.
We experimentally test quantum contextuality of a single qutrit using NMR. The contextuality inequalities based on nine observables developed by Kurzynski et. al. are first reformulated in terms of traceless observables which can be measured in an NM R experiment. These inequalities reveal the contextuality of almost all single-qutrit states. We demonstrate the violation of the inequality on four different initial states of a spin-1 deuterium nucleus oriented in a liquid crystal matrix, and follow the violation as the states evolve in time. We also describe and experimentally perform a single-shot test of contextuality for a subclass of qutrit states whose density matrix is diagonal in the energy basis.
In state-of-the-art quantum key distribution (QKD) systems, the main limiting factor in increasing the key generation rate is the timing resolution in detecting photons. Here, we present and experimentally demonstrate a strategy to overcome this limi tation, also for high-loss and long-distance implementations. We exploit the intrinsic wavelength correlations of entangled photons using wavelength multiplexing to generate a quantum secure key from polarization entanglement. The presented approach can be integrated into both fiber- and satellite-based quantum-communication schemes, without any changes to most types of entanglement sources. This technique features a huge scaling potential allowing to increase the secure key rate by several orders of magnitude as compared to non-multiplexed schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا