ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear reactor fissile isotopes antineutrino spectra

230   0   0.0 ( 0 )
 نشر من قبل V. V. Sinev
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف V. Sinev




اسأل ChatGPT حول البحث

Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.



قيم البحث

اقرأ أيضاً

New fissile isotopes antineutrino spectra ($^{235}$U, $^{238}$U, $^{239}$Pu and $^{241}$Pu) calculation is presented. On base of summation method the toy model was developed. It was shown that total antineutrino number is conserved in framework of gi ven database on individual fragments yields. The analysis of antineutrino spectrum shape says that any presented antineutrino spectrum should satisfy to the total antineutrino number conservation.
We calculate the Inverse Beta Decay (IBD) antineutrino spectrum generated by nuclear reactors using the summation method to understand deviations from the smooth Huber-Mueller model due to the decay of individual fission products, showing that plotti ng the ratio of two adjacent spectra points can effectively reveal these deviations. We obtained that for binning energies of 0.1 MeV or lower, abrupt changes in the spectra due to the jagged nature of the individual antineutrino spectra could be observed for highly precise experiments. Surprisingly, our calculations also reveal a peak-like feature in the adjacent points ratio plot at 4.5 MeV even with a 0.25 MeV binning interval, which we find is present in the IBD Daya Bay spectrum published in 2016. We show that this 4.5 MeV feature is caused by the contributions of just four fission products, 95Y, 98,101N and 102Tc. This would be the first evidence of the decay of a few fission products in the IBD antineutrino spectrum from a nuclear reactor.
Recently new reactor antineutrino spectra have been provided for 235U, 239Pu, 241Pu and 238U, increasing the mean flux by about 3 percent. To good approximation, this reevaluation applies to all reactor neutrino experiments. The synthesis of publishe d experiments at reactor-detector distances <100 m leads to a ratio of observed event rate to predicted rate of 0.976(0.024). With our new flux evaluation, this ratio shifts to 0.943(0.023), leading to a deviation from unity at 98.6% C.L. which we call the reactor antineutrino anomaly. The compatibility of our results with the existence of a fourth non-standard neutrino state driving neutrino oscillations at short distances is discussed. The combined analysis of reactor data, gallium solar neutrino calibration experiments, and MiniBooNE-neutrino data disfavors the no-oscillation hypothesis at 99.8% C.L. The oscillation parameters are such that |Delta m_{new}^2|>1.5 eV^2 (95%) and sin^2(2theta_{new})=0.14(0.08) (95%). Constraints on the theta13 neutrino mixing angle are revised.
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of $overline{ u}_{e}$ is important when making theore tical predictions. One source of $overline{ u}_{e}$ that is often neglected arises from the irradiation of the nonfuel materials in reactors. The $overline{ u}_{e}$ rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible $overline{ u}_{e}$ sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the $overline{ u}_{e}$ source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel $overline{ u}_{e}$ contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8--2.0~MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel $overline{ u}_{e}$ contribution.
Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare the m to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا