ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbations and chaos in quantum maps

131   0   0.0 ( 0 )
 نشر من قبل Diego A. Wisniacki
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The local density of states (LDOS) is a distribution that characterizes the effect of perturbations on quantum systems. Recently, it was proposed a semiclassical theory for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is a Breit-Wigner distribution independent of the perturbation strength and also gives a semiclassical expression for the LDOS witdth. Here, we test the validity of such an approximation in quantum maps varying the degree of chaoticity, the region in phase space where the perturbation is applying and the intensity of the perturbation. We show that for highly chaotic maps or strong perturbations the semiclassical theory of the LDOS is accurate to describe the quantum distribution. Moreover, the width of the LDOS is also well represented for its semiclassical expression in the case of mixed classical dynamics.



قيم البحث

اقرأ أيضاً

The properties of functional relation between a non-invertible chaotic drive and a response map in the regime of generalized synchronization of chaos are studied. It is shown that despite a very fuzzy image of the relation between the current states of the maps, the functional relation becomes apparent when a sufficient interval of driving trajectory is taken into account. This paper develops a theoretical framework of such functional relation and illustrates the main theoretical conclusions using numerical simulations.
115 - Laszlo Ujfalusi , Imre Varga , 2011
In this work we investigate the inverse of the celebrated Bohigas-Giannoni-Schmit conjecture. Using two inversion methods we compute a one-dimensional potential whose lowest N eigenvalues obey random matrix statistics. Our numerical results indicate that in the asymptotic limit, N->infinity, the solution is nowhere differentiable and most probably nowhere continuous. Thus such a counterexample does not exist.
Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks bot h analytically and numerically. The temporal variation is rather general and formalized as being driven by a metric dynamical system. Four network models are discussed in detail in which the interconnections between vertices vary through time randomly. These models are 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4) the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation and randomness of the connection topology can enhance synchronizability in many cases; however, there are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of the time-varying graphs contains a spanning tree.
202 - A.V. Dvornichenko 2010
We study an influence of nonlinear dissipation and external perturbations onto transition scenarious to chaos in Lorenz-Haken system. It will be show that varying in external potential parameters values leads to parameters domain formation of chaos r ealization. In the modified Lorenz-Haken system transitions from regular to chaotic dynamics can be of Ruelle-Takens scenario, Feigenbaum scenario, or through intermittency.
364 - Alain M. Dikande 2021
The texture of phase space and bifurcation diagrams of two-dimensional discrete maps describing a lattice of interacting oscillators, confined in on-site potentials with deformable double-well shapes, are examined. The two double-well potentials cons idered belong to a family proposed by Dikande and Kofane (A. M. Dikande and T. C. Kofane, Solid State Commun. vol. 89, p. 559, 1994), whose shapes can be tuned distinctively: one has a variable barrier height and the other has variable minima positions. However the two parametrized double-well potentials reduce to the $phi^4$ substrate, familiar in the studies of structural phase transitions in centro-symmetric crystals or bistable processes in biophysics. It is shown that although the parametric maps are area preserving their routes to chaos display different characteristic features: the first map exhibits a cascade of period-doubling bifurcations with respect to the potential amplitude, but period-halving bifurcations with respect to the shape deformability parameter. On the other hand the first bifurcation of the second map always coincides with the first pitchfork bifurcation of the $phi^4$ map. However, an increase of the deformability parameter shrinks the region between successive period-doubling bifurcations. The two opposite bifurcation cascades characterizing the first map, and the shrinkage of regions between successive bifurcation cascades which is characteristic of the second map, suggest a non-universal character of the Feigenbaum-number sequences associate with the two discrete parametric double-well maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا