ﻻ يوجد ملخص باللغة العربية
We study an influence of nonlinear dissipation and external perturbations onto transition scenarious to chaos in Lorenz-Haken system. It will be show that varying in external potential parameters values leads to parameters domain formation of chaos realization. In the modified Lorenz-Haken system transitions from regular to chaotic dynamics can be of Ruelle-Takens scenario, Feigenbaum scenario, or through intermittency.
A three-component dynamic system with influence of pumping and nonlinear dissipation describing a quantum cavity electrodynamic device is studied. Different dynamical regimes are investigated in terms of divergent trajectories approaches and fractal
Transient chaos is a characteristic behavior in nonlinear dynamics where trajectories in a certain region of phase space behave chaotically for a while, before escaping to an external attractor. In some situations the escapes are highly undesirable,
The local density of states (LDOS) is a distribution that characterizes the effect of perturbations on quantum systems. Recently, it was proposed a semiclassical theory for the LDOS of chaotic billiards and maps. This theory predicts that the LDOS is
Random walks serve as important tools for studying complex network structures, yet their dynamics in cases where transition probabilities are not static remain under explored and poorly understood. Here we study nonlinear random walks that occur when
We uncover a route from low-dimensional to high-dimensional chaos in nonsmooth dynamical systems as a bifurcation parameter is continuously varied. The striking feature is the existence of a finite parameter interval of periodic attractors in between