ﻻ يوجد ملخص باللغة العربية
Let T -> S be a finite flat morphism of degree two between regular integral schemes of dimension at most two (and with 2 invertible), having regular branch divisor D. We establish a bijection between Azumaya quaternion algebras on T and quadric surface bundles over S with simple degeneration along D. This is a manifestation of the exceptional isomorphism A_1^2 = D_2 degenerating to the exceptional isomorphism A_1 = B_1. In one direction, the even Clifford algebra yields the map. In the other direction, we show that the classical algebra norm functor can be uniquely extended over the discriminant divisor. Along the way, we study the orthogonal group schemes, which are smooth yet nonreductive, of quadratic forms with simple degeneration. Finally, we provide two surprising applications: constructing counter-examples to the local-global principle for isotropy, with respect to discrete valuations, of quadratic forms over surfaces; and a new proof of the global Torelli theorem for very general cubic fourfolds containing a plane.
We study arithmetic of the algebraic varieties defined over number fields by applying Lagrange interpolation to fibrations. Assuming a conjecture of M. Stoll, we show, for Ch^atelet surface bundles over curves, that the violation of Hasse principle
We show that the K-moduli spaces of log Fano pairs $(mathbb{P}^1timesmathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $mathbb{P}^3$. This, together wit
Let S be a split family of del Pezzo surfaces over a discrete valuation ring such that the general fiber is smooth and the special fiber has ADE-singularities. Let G be the reductive group given by the root system of these singularities. We construct
Let S be a smooth del Pezzo surface that is defined over a field K and splits over a Galois extension L. Let G be either the split reductive group given by the root system of $S_L$ in Pic $S_L$, or a form of it containing the Neron-Severi torus. Let
We study the birational properties of geometrically rational surfaces from a derived categorical point of view. In particular, we give a criterion for the rationality of a del Pezzo surface over an arbitrary field, namely, that its derived category d