ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadric surface bundles over surfaces

306   0   0.0 ( 0 )
 نشر من قبل Asher Auel
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let T -> S be a finite flat morphism of degree two between regular integral schemes of dimension at most two (and with 2 invertible), having regular branch divisor D. We establish a bijection between Azumaya quaternion algebras on T and quadric surface bundles over S with simple degeneration along D. This is a manifestation of the exceptional isomorphism A_1^2 = D_2 degenerating to the exceptional isomorphism A_1 = B_1. In one direction, the even Clifford algebra yields the map. In the other direction, we show that the classical algebra norm functor can be uniquely extended over the discriminant divisor. Along the way, we study the orthogonal group schemes, which are smooth yet nonreductive, of quadratic forms with simple degeneration. Finally, we provide two surprising applications: constructing counter-examples to the local-global principle for isotropy, with respect to discrete valuations, of quadratic forms over surfaces; and a new proof of the global Torelli theorem for very general cubic fourfolds containing a plane.



قيم البحث

اقرأ أيضاً

68 - Yongqi Liang 2021
We study arithmetic of the algebraic varieties defined over number fields by applying Lagrange interpolation to fibrations. Assuming a conjecture of M. Stoll, we show, for Ch^atelet surface bundles over curves, that the violation of Hasse principle being accounted for by the Brauer-Manin obstruction is not invariant under an arbitrary finite extension of the ground field.
We show that the K-moduli spaces of log Fano pairs $(mathbb{P}^1timesmathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $mathbb{P}^3$. This, together wit h recent results by Laza-OGrady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$-curves on $mathbb{P}^1timesmathbb{P}^1$ and the Baily-Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
Let S be a split family of del Pezzo surfaces over a discrete valuation ring such that the general fiber is smooth and the special fiber has ADE-singularities. Let G be the reductive group given by the root system of these singularities. We construct a G-torsor over S whose restriction to the generic fiber is the extension of structure group of the universal torsor. This extends a construction of Friedman and Morgan for individual singular del Pezzo surfaces. In case of very good residue characteristic, this torsor is unique and infinitesimally rigid.
Let S be a smooth del Pezzo surface that is defined over a field K and splits over a Galois extension L. Let G be either the split reductive group given by the root system of $S_L$ in Pic $S_L$, or a form of it containing the Neron-Severi torus. Let $mathcal{G}$ be the G-torsor over $S_L$ obtained by extension of structure group from a universal torsor $mathcal{T}$ over $S_L$. We prove that $mathcal{G}$ does not descend to S unless $mathcal{T}$ does. This is in contrast to a result of Friedman and Morgan that such $mathcal{G}$ always descend to singular del Pezzo surfaces over $mathbb{C}$ from their desingularizations.
We study the birational properties of geometrically rational surfaces from a derived categorical point of view. In particular, we give a criterion for the rationality of a del Pezzo surface over an arbitrary field, namely, that its derived category d ecomposes into zero-dimensional components. For del Pezzo surfaces of degree at least 5, we construct explicit semiorthogonal decompositions by subcategories of modules over semisimple algebras arising as endomorphism algebras of vector bundles and we show how to retrieve information about the index of the surface from Brauer classes and Chern classes associated to these vector bundles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا