ترغب بنشر مسار تعليمي؟ اضغط هنا

Deeply virtual Compton scattering on longitudinally polarized protons and neutrons at CLAS

138   0   0.0 ( 0 )
 نشر من قبل Silvia Niccolai
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Silvia Niccolai




اسأل ChatGPT حول البحث

This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH3) and deuterons (ND3) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.



قيم البحث

اقرأ أيضاً

This paper reports the measurement of polarized and unpolarized cross sections for the ep -> ep reaction, which is comprised of Deeply Virtual Compton Scattering (DVCS) and Bethe-Heitler (BH) processes, at an electron beam energy of 5.88 GeV at the T homas Jefferson National Accelerator Facility using the Large Acceptance Spectrometer CLAS. The unpolarized cross sections and polarized cross section differences have been measured over broad kinematics, 0.10 < x_B < 0.58, 1.0 < Q^2 < 4.8 GeV^2, and 0.09 < -t < 2.00 GeV^2. The results are found to be consistent with previous CLAS data, and these new data are discussed in the framework of the generalized parton distribution approach. Calculations with two widely used phenomenological models, denoted VGG and KMSC, are approximately compatible with the experimental results over a large portion of the kinematic range of the data.
We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off $^4$He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a press urized $^4$He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling $^4$He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the coherent ($e^4$He$~to~e$$^4$He$gamma$) beam spin asymmetries compared to those observed on the free proton, while the incoherent ($e^4$He$~to~e$p$gamma$X$$) asymmetries exhibit a 30$%$ suppression. From the coherent data, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $cal H_A$, leading the way toward 3D imaging of the partonic structure of nuclei.
Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or b eam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle $phi$ around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization are shown to be compatible with those from an unpolarized deuterium target, which is expected for incoherent scattering dominant at larger momentum transfer. Furthermore, the results for the single target-spin asymmetry and for the double-spin asymmetry are found to be compatible with the corresponding asymmetries previously measured on a hydrogen target. For coherent scattering on the deuteron at small momentum transfer to the target, these findings imply that the tensor contribution to the cross section is small. Furthermore, the tensor asymmetry is found to be compatible with zero.
85 - A. Kim , H. Avakian , V. Burkert 2015
The target and double spin asymmetries of the exclusive pseudoscalar channel $vec evec pto eppi^0$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized pro ton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $x_B$, $-t$ and $phi$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $tilde{H}_T$ and $E_T$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $H_T$ and $bar E_T$. These data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.
Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final p hoton-nucleus system, and in the generalized Bjorken regime where both photon virtualities $Q^2$ and $ Q^2$ are large. We show that this process has the unique virtue of combining the large diffractive cross sections at high energy with the tomographic ability of deeply virtual Compton scattering to scrutinize the quark and gluon content of nucleons and light nuclei. Its study at an electron-ion collider would enlighten the internal structure of hadrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا