ﻻ يوجد ملخص باللغة العربية
Most stars form in a cluster environment. These stars are initially surrounded by discs from which potentially planetary systems form. Of all cluster environments starburst clusters are probably the most hostile for planetary systems in our Galaxy. The intense stellar radiation and extreme density favour rapid destruction of circumstellar discs via photoevaporation and stellar encounters. Evolving a virialized model of the Arches cluster in the Galactic tidal field we investigate the effect of stellar encounters on circumstellar discs in a prototypical starburst cluster. Despite its proximity to the deep gravitational potential of the Galactic centre only a moderate fraction of members escapes to form an extended pair of tidal tails. Our simulations show that encounters destroy one third of the circumstellar discs in the cluster core within the first 2.5 Myr of evolution, preferentially affecting the least and most massive stars. A small fraction of these events causes rapid ejection and the formation of a weaker second pair of tidal tails that is overpopulated by disc-poor stars. Two predictions arise from our study: (i) If not destroyed by photoevaporation protoplanetary discs of massive late B- and early O-type stars represent the most likely hosts of planet formation in starburst clusters. (ii) Multi-epoch K- and L-band photometry of the Arches cluster would provide the kinematically selected membership sample required to detect the additional pair of disc-poor tidal tails.
We study the dynamical evolution of the young star cluster Arches and its dependence on the assumed initial stellar mass function (IMF). We perform many direct $N$-body simulations with various initial conditions and two different choices of IMFs. On
We study the impact of dust evolution in a protoplanetary disk around a T Tauri star on the disk chemical composition. For the first time we utilize a comprehensive model of dust evolution which includes growth, fragmentation and sedimentation. Speci
We present a study of the evolution of the inner few astronomical units of protoplanetary disks around low-mass stars. We consider nearby stellar groups with ages spanning from 1 to 11 Myr, distributed into four age bins. Combining PANSTARSS photomet
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain h
We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combinatio