ترغب بنشر مسار تعليمي؟ اضغط هنا

Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High Energy Emission from the Inner 2deg by 1deg of the Galactic Center

65   0   0.0 ( 0 )
 نشر من قبل Farhad Yusef-Zadeh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray and gamma-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of FeI 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra and the H.E.S.S. observatories. The inferred physical quantities from modeling multi-wavelength emission in the context of bremsstrahlung emission from the inner 300x120 parsecs of the Galactic center are constrained to have the cosmic ray ionization rate 1-10x10^{-15} s^-1, molecular gas heating rate elevating the gas temperature to 75-200K, fractional ionization of molecular gas 10^{-6} to 10^{-5}, large scale magnetic field 10-20 micro Gauss, the density of diffuse and dense molecular gas 100 and 10^3 cm^{-3} over 300pc and 50pc pathlengths, and the variability of FeI Kalpha 6.4 keV line emission on yearly time scales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV gamma-rays detected by Fermi and that the cosmic ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

قيم البحث

اقرأ أيضاً

We analyze the processes governing cosmic-ray (CR) penetration into molecular clouds and the resulting generation of gamma-ray emission. The density of CRs inside a cloud is depleted at lower energies due to the self-excited MHD turbulence. The deple tion depends on the effective gas column density (size) of the cloud. We consider two different environments where the depletion effect is expected to be observed. For the Central Molecular Zone, the expected range of CR energy depletion is $Elesssim 10$ GeV, leading to the depletion of gamma-ray flux below $E_gammaapprox 2$ GeV. This effect can be important for the interpretation of the GeV gamma-ray excess in the Galactic Center, which has been revealed from the standard model of CR propagation (assuming the CR spectrum inside a cloud to be equal to the interstellar spectrum). Furthermore, recent observations of some local molecular clouds suggest the depletion of the gamma-ray emission, indicating possible self-modulation of the penetrating low-energy CRs.
The distribution of the very-high-energy diffuse emission in the inner 200 pc measured by HE.S.S. indicates the existence of a pronounced cosmic-ray (CR) gradient peaking on the Galactic center (GC). Previous studies have shown that these data are co nsistent with a scenario in which the CRs are diffused away from a stationary source at the GC. We previously showed that, taking the 3D gas distribution and a realistic distribution of supernova explosions into account, CRs accelerated in supernova remnants (SNR) should account for a large fraction of the GC CRs observed by H.E.S.S.; but the model did not fully reproduce the apparent over-density in the inner 30 pc. In this work, we study the time-energy dependent cosmic rays escape from the remnant that is expected to occur when the shock wave decelerates in the surrounding medium. We show that the resulting CR distribution follows the quasi-stationary profile observed by H.E.S.S. more closely. The main signature is that the energy-dependent escape creates a strong dependency of the morphology of the gamma-ray emission with the energy. The existence of this energy dependency should be observable by the Cherenkov Telescope Array.
336 - A. Albert , R. Alfaro , C. Alvarez 2021
The study of high-energy gamma rays from passive Giant Molecular Clouds (GMCs) in our Galaxy is an indirect way to characterize and probe the paradigm of the sea of cosmic rays in distant parts of the Galaxy. By using data from the High Altitude Wate r Cherenkov (HAWC) observatory, we measure the gamma-ray flux above 1 TeV of a set of these clouds to test the paradigm. We selected high-galactic latitude clouds that are in HAWCs field-of-view and which are within 1~kpc distance from the Sun. We find no significant excess emission in the cloud regions, nor when we perform a stacked log-likelihood analysis of GMCs. Using a Bayesian approach, we calculate 95% credible intervals upper limits of the gamma-ray flux and estimate limits on the cosmic-ray energy density of these regions. These are the first limits to constrain gamma-ray emission in the multi-TeV energy range ($>$1 TeV) using passive high-galactic latitude GMCs. Assuming that the main gamma-ray production mechanism is due to proton-proton interaction, the upper limits are consistent with a cosmic-ray flux and energy density similar to that measured at Earth.
A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the le ading physical processes controlling their transport on the way from a highly ionized interstellar medium to a dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is essentially characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds.
78 - Pasquale Blasi 2012
The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to rigidity ? 10^6-10^7 GV. This confidence somehow resulted in the construction of a paradigm, the so-called SNR paradigm: CRs are accelerated through diffusive shock acceleration in SNRs and propagate diffusively in the Galaxy in an energy dependent way. Qualitative confirmation of the SNR acceleration scenario has recently been provided by gamma ray and X-ray observations. Diffusive propagation in the Galaxy is probed observationally through measurement of the secondary to primary nuclei flux ratios (such as B/C). There are however some weak points in the paradigm, which suggest that we are probably missing some physical ingredients in our models. The theory of diffusive shock acceleration at SNR shocks predicts spectra of accelerated particles which are systematically too hard compared with the ones inferred from gamma ray observations. Moreover, hard injection spectra indirectly imply a steep energy dependence of the diffusion coefficient in the Galaxy, which in turn leads to anisotropy larger than the observed one. Moreover recent measurements of the flux of nuclei suggest that the spectra have a break at rigidity ? 200 GV, which does not sit well with the common wisdom in acceleration and propagation. In this paper I will review these new developments and suggest some possible implications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا