ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-dependent escape of cosmic rays from supernova remnants potentially at the origin of the very-high-energy cosmic-ray gradient of the Galactic center

55   0   0.0 ( 0 )
 نشر من قبل Lea Jouvin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The distribution of the very-high-energy diffuse emission in the inner 200 pc measured by HE.S.S. indicates the existence of a pronounced cosmic-ray (CR) gradient peaking on the Galactic center (GC). Previous studies have shown that these data are consistent with a scenario in which the CRs are diffused away from a stationary source at the GC. We previously showed that, taking the 3D gas distribution and a realistic distribution of supernova explosions into account, CRs accelerated in supernova remnants (SNR) should account for a large fraction of the GC CRs observed by H.E.S.S.; but the model did not fully reproduce the apparent over-density in the inner 30 pc. In this work, we study the time-energy dependent cosmic rays escape from the remnant that is expected to occur when the shock wave decelerates in the surrounding medium. We show that the resulting CR distribution follows the quasi-stationary profile observed by H.E.S.S. more closely. The main signature is that the energy-dependent escape creates a strong dependency of the morphology of the gamma-ray emission with the energy. The existence of this energy dependency should be observable by the Cherenkov Telescope Array.

قيم البحث

اقرأ أيضاً

74 - E.G. Berezhko 2014
We analyze the results of recent measurements of Galactic cosmic ray (GCRs) energy spectra and the spectra of nonthermal emission from supernova remnants (SNRs) in order to determine their consistency with GCR origin in SNRs. It is shown that the mea sured primary and secondary CR nuclei energy spectra as well as the observed positron-to-electron ratio are consistent with the origin of GCRs up to the energy 10^17 eV in SNRs. Existing SNR emission data provide evidences for efficient CR production in SNRs accompanied by significant magnetic field amplification. In some cases the nature of the detected gamma-ray emission is difficult to determine because key SNR parameters are not known or poorly constrained.
189 - Jacco Vink 2012
The origin of cosmic rays holds still many mysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that superno va remnants can indeed efficiently accelerate cosmic rays. For this conference devoted to the Astronomical Institute Utrecht I put the emphasis on work that was done in my group, but placed in a broader context: efficient cosmic-ray acceleration and the im- plications for cosmic-ray escape, synchrotron radiation and the evidence for magnetic- field amplification, potential X-ray synchrotron emission from cosmic-ray precursors, and I conclude with the implications of cosmic-ray escape for a Type Ia remnant like Tycho and a core-collapse remnant like Cas A.
It is widely believe that galactic cosmic rays are originated in supernova remnants (SNRs) where they are accelerated by diffusive shock acceleration process at supernova blast waves driven by expanding SNRs. In recent theoretical developments of the diffusive shock acceleration theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are true generator of cosmic rays, they should accelerate not only protons but also heavier nuclei with right proportion and the maximum energy of heavier nuclei should be atomic mass (Z) times that of protons. In this work we investigate the implications of acceleration of heavier nuclei in SNRs on energetic gamma rays those are produced in hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition instead of pure protons to explain the observation and secondly the gamma ray flux above few tens of TeV would be significantly higher if cosmic rays particles can attain energies Z times of the knee energy in lieu of 200 TeV, as suggested earlier for non-amplified magnetic fields. The two stated maximum energy paradigm will be discriminated in future by the upcoming gamma ray experiments like Cherenkov Telescope array (CTA).
Very high energy (VHE) gamma-rays have been detected from the direction of the Galactic center. The H.E.S.S. Cherenkov telescopes have located this gamma-ray source with a preliminary position uncertainty of 8.5 per axis (6 statistic + 6 sytematic pe r axis). Within the uncertainty region several possible counterpart candidates exist: the Super Massive Black Hole Sgr A*, the Pulsar Wind Nebula candidate G359.95-0.04, the Low Mass X-Ray Binary-system J174540.0-290031, the stellar cluster IRS 13, as well as self-annihilating dark matter. It is experimentally very challenging to further improve the positional accuracy in this energy range and therefore, it may not be possible to clearly associate one of the counterpart candidates with the VHE-source. Here, we present a new method to investigate a possible link of the VHE-source with the near environment of Sgr A* (within approximately 1000 Schwarzschild radii). This method uses the time- and energy-dependent effect of absorption of gamma-rays by pair-production (in the following named pair-eclipse) with low-energy photons of stars closely orbiting the SMBH Sgr A*.
We explain the observed multiwavelength photon spectrum of a number of BL Lac objects detected at very high energy (VHE, $E gtrsim 30$ GeV), using a lepto-hadronic emission model. The one-zone leptonic emission is employed to fit the synchrotron peak . Subsequently, the SSC spectrum is calculated, such that it extends up to the highest energy possible for the jet parameters considered. The data points beyond this energy, and also in the entire VHE range are well explained using a hadronic emission model. The ultrahigh-energy cosmic rays (UHECRs, $Egtrsim 0.1$ EeV) escaping from the source interact with the extragalactic background light (EBL) during propagation over cosmological distances to initiate electromagnetic cascade down to $sim1$ GeV energies. The resulting photon spectrum peaks at $sim1$ TeV energies. We consider a random turbulent extragalactic magnetic field (EGMF) with a Kolmogorov power spectrum to find the survival rate of UHECRs within 0.1 degrees of the direction of propagation in which the observer is situated. We restrict ourselves to an RMS value of EGMF, $B_{rm rms}sim 10^{-5}$ nG, for a significant contribution to the photon spectral energy distribution (SED) from UHECR interactions. We found that UHECR interactions on the EBL and secondary cascade emission can fit gamma-ray data from the BL Lacs we considered at the highest energies. The required luminosity in UHECRs and corresponding jet power are below the Eddington luminosities of the super-massive black holes in these BL Lacs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا