ﻻ يوجد ملخص باللغة العربية
Fast approximate nearest neighbor (NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is (approximate) nearest neighbor search in a given data set? And which data properties affect the difficulty of nearest neighbor search and how? This paper introduces the first concrete measure called Relative Contrast that can be used to evaluate the influence of several crucial data characteristics such as dimensionality, sparsity, and database size simultaneously in arbitrary normed metric spaces. Moreover, we present a theoretical analysis to prove how the difficulty measure (relative contrast) determines/affects the complexity of Local Sensitive Hashing, a popular approximate NN search method. Relative contrast also provides an explanation for a family of heuristic hashing algorithms with good practical performance based on PCA. Finally, we show that most of the previous works in measuring NN search meaningfulness/difficulty can be derived as special asymptotic cases for dense vectors of the proposed measure.
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors int
Nearest neighbor search has found numerous applications in machine learning, data mining and massive data processing systems. The past few years have witnessed the popularity of the graph-based nearest neighbor search paradigm because of its superior
In Near-Neighbor Search (NNS), a new client queries a database (held by a server) for the most similar data (near-neighbors) given a certain similarity metric. The Privacy-Preserving variant (PP-NNS) requires that neither server nor the client shall
We formulate approximate nearest neighbor (ANN) search as a multi-label classification task. The implications are twofold. First, tree-based indexes can be searched more efficiently by interpreting them as models to solve this task. Second, in additi
Embedding into hyperbolic space is emerging as an effective representation technique for datasets that exhibit hierarchical structure. This development motivates the need for algorithms that are able to effectively extract knowledge and insights from