ترغب بنشر مسار تعليمي؟ اضغط هنا

Regional System Identification and Computer Based Switchable Control of a Nonlinear Hot Air Blower System

177   0   0.0 ( 0 )
 نشر من قبل Ijaz Hussain Mr
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the design and implementation of linear controllers with a switching condition for a nonlinear hot air blower system (HABS) process trainer PT326. The system is interfaced with a computer through a USB based data acquisition module and interfacing circuitry. A calibration equation is implemented through computer in order to convert the amplified output of the sensor to temperature. Overall plant is nonlinear; therefore, system identification is performed in three different regions depending upon the plant input. For these three regions, three linear controllers are designed with closed-loop system having small rise time, settling time and overshoot. Switching of controllers is based on regions defined by plant input. In order to avoid the effect of discontinuity, due to switching of linear controllers, parameters of all linear controllers are taken closer to each other. Finally, discretized controllers along with switching condition are implemented for the plant through computer and practical results are demonstrated.



قيم البحث

اقرأ أيضاً

168 - Jun Xu , Qinghua Tao , Zhen Li 2019
In this paper, the efficient hinging hyperplanes (EHH) neural network is proposed based on the model of hinging hyperplanes (HH). The EHH neural network is a distributed representation, the training of which involves solving several convex optimizati on problems and is fast. It is proved that for every EHH neural network, there is an equivalent adaptive hinging hyperplanes (AHH) tree, which was also proposed based on the model of HH and find good applications in system identification. The construction of the EHH neural network includes 2 stages. First the initial structure of the EHH neural network is randomly determined and the Lasso regression is used to choose the appropriate network. To alleviate the impact of randomness, secondly, the stacking strategy is employed to formulate a more general network structure. Different from other neural networks, the EHH neural network has interpretability ability, which can be easily obtained through its ANOVA decomposition (or interaction matrix). The interpretability can then be used as a suggestion for input variable selection. The EHH neural network is applied in nonlinear system identification, the simulation results show that the regression vector selected is reasonable and the identification speed is fast, while at the same time, the simulation accuracy is satisfactory.
In this short paper, we aim at developing algorithms for sparse Volterra system identification when the system to be identified has infinite impulse response. Assuming that the impulse response is represented as a sum of exponentials and given input- output data, the problem of interest is to find the simplest nonlinear Volterra model which is compatible with the a priori information and the collected data. By simplest, we mean the model whose impulse response has the least number of exponentials. The algorithms provided are able to handle both fragmented data and measurement noise. Academic examples at the end of paper show the efficacy of proposed approach.
A simple nonlinear system modeling algorithm designed to work with limited emph{a priori }knowledge and short data records, is examined. It creates an empirical Volterra series-based model of a system using an $l_{q}$-constrained least squares algori thm with $qgeq 1$. If the system $mleft( cdot right) $ is a continuous and bounded map with a finite memory no longer than some known $tau$, then (for a $D$ parameter model and for a number of measurements $N$) the difference between the resulting model of the system and the best possible theoretical one is guaranteed to be of order $sqrt{N^{-1}ln D}$, even for $Dgeq N$. The performance of models obtained for $q=1,1.5$ and $2$ is tested on the Wiener-Hammerstein benchmark system. The results suggest that the models obtained for $q>1$ are better suited to characterize the nature of the system, while the sparse solutions obtained for $q=1$ yield smaller error values in terms of input-output behavior.
In this paper, we study the system identification problem for sparse linear time-invariant systems. We propose a sparsity promoting block-regularized estimator to identify the dynamics of the system with only a limited number of input-state data samp les. We characterize the properties of this estimator under high-dimensional scaling, where the growth rate of the system dimension is comparable to or even faster than that of the number of available sample trajectories. In particular, using contemporary results on high-dimensional statistics, we show that the proposed estimator results in a small element-wise error, provided that the number of sample trajectories is above a threshold. This threshold depends polynomially on the size of each block and the number of nonzero elements at different rows of input and state matrices, but only logarithmically on the system dimension. A by-product of this result is that the number of sample trajectories required for sparse system identification is significantly smaller than the dimension of the system. Furthermore, we show that, unlike the recently celebrated least-squares estimators for system identification problems, the method developed in this work is capable of textit{exact recovery} of the underlying sparsity structure of the system with the aforementioned number of data samples. Extensive case studies on synthetically generated systems, physical mass-spring networks, and multi-agent systems are offered to demonstrate the effectiveness of the proposed method.
In this paper, we propose an MPC-based precision cooling strategy (PCS) for energy efficient thermal management of automotive air conditioning (A/C) system. The proposed PCS is able to provide precise tracking of the time-varying cooling power trajec tory, which is assumed to match the passenger comfort requirements. In addition, by leveraging the emerging connected and automated vehicles (CAVs) technology, vehicle speed preview can be incorporated in our A/C thermal management strategy for further energy efficiency improvement. This proposed A/C thermal management strategy is developed and evaluated based on a physics-based A/C system model (ACSim) from Ford Motor Company for the vehicles with electrified powertrains. In a comparison with Ford benchmark case over SC03 cycle, for tracking the same cooling power trajectory, the proposed PCS provides 4.9% energy saving at the cost of a slight increase in the cabin temperature (less than 1$^oC$). It is also demonstrated that by coordinating with future vehicle speed and shifting the A/C power load, the A/C energy consumption can be further reduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا