ﻻ يوجد ملخص باللغة العربية
This paper describes the design and implementation of linear controllers with a switching condition for a nonlinear hot air blower system (HABS) process trainer PT326. The system is interfaced with a computer through a USB based data acquisition module and interfacing circuitry. A calibration equation is implemented through computer in order to convert the amplified output of the sensor to temperature. Overall plant is nonlinear; therefore, system identification is performed in three different regions depending upon the plant input. For these three regions, three linear controllers are designed with closed-loop system having small rise time, settling time and overshoot. Switching of controllers is based on regions defined by plant input. In order to avoid the effect of discontinuity, due to switching of linear controllers, parameters of all linear controllers are taken closer to each other. Finally, discretized controllers along with switching condition are implemented for the plant through computer and practical results are demonstrated.
In this paper, the efficient hinging hyperplanes (EHH) neural network is proposed based on the model of hinging hyperplanes (HH). The EHH neural network is a distributed representation, the training of which involves solving several convex optimizati
In this short paper, we aim at developing algorithms for sparse Volterra system identification when the system to be identified has infinite impulse response. Assuming that the impulse response is represented as a sum of exponentials and given input-
A simple nonlinear system modeling algorithm designed to work with limited emph{a priori }knowledge and short data records, is examined. It creates an empirical Volterra series-based model of a system using an $l_{q}$-constrained least squares algori
In this paper, we study the system identification problem for sparse linear time-invariant systems. We propose a sparsity promoting block-regularized estimator to identify the dynamics of the system with only a limited number of input-state data samp
In this paper, we propose an MPC-based precision cooling strategy (PCS) for energy efficient thermal management of automotive air conditioning (A/C) system. The proposed PCS is able to provide precise tracking of the time-varying cooling power trajec