ترغب بنشر مسار تعليمي؟ اضغط هنا

On List Colouring and List Homomorphism of Permutation and Interval Graphs

84   0   0.0 ( 0 )
 نشر من قبل Jessica Enright
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

List colouring is an NP-complete decision problem even if the total number of colours is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list colouring of permutation graphs with a bounded total number of colours. More generally we give a polynomial-time algorithm that solves the list-homomorphism problem to any fixed target graph for a large class of input graphs including all permutation and interval graphs.

قيم البحث

اقرأ أيضاً

3-list colouring is an NP-complete decision problem. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving 3-list colouring on permutation graphs.
This paper disproves a conjecture of Wang, Wu, Yan and Xie, and answers in negative a question in Dvorak, Pekarek and Sereni. In return, we pose five open problems.
We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph $(G,sigma)$, equipped with lists $L(v) subseteq V(H), v in V(G)$, of al lowed images, to a fixed target signed graph $(H,pi)$. The complexity of the similar homomorphism problem without lists (corresponding to all lists being $L(v)=V(H)$) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when $H$ is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we illustrate this by classifying the complexity of irreflexive signed graphs in which the unicoloured edges form some simple structures, namely paths or cycles. The structure of the signed graphs in the polynomial cases is interesting, suggesting they may constitute a nice class of signed graphs analogous to the so-called bi-arc graphs (which characterized the polynomial cases of list homomorphisms to unsigned graphs).
122 - Rongxing Xu , Xuding Zhu 2020
A graph $G$ is called $3$-choice critical if $G$ is not $2$-choosable but any proper subgraph is $2$-choosable. A characterization of $3$-choice critical graphs was given by Voigt in [On list Colourings and Choosability of Graphs, Habilitationsschrif t, Tu Ilmenau(1998)]. Voigt conjectured that if $G$ is a bipartite $3$-choice critical graph, then $G$ is $(4m, 2m)$-choosable for every integer $m$. This conjecture was disproved by Meng, Puleo and Zhu in [On (4, 2)-Choosable Graphs, Journal of Graph Theory 85(2):412-428(2017)]. They showed that if $G=Theta_{r,s,t}$ where $r,s,t$ have the same parity and $min{r,s,t} ge 3$, or $G=Theta_{2,2,2,2p}$ with $p ge 2$, then $G$ is bipartite $3$-choice critical, but not $(4,2)$-choosable. On the other hand, all the other bipartite 3-choice critical graphs are $(4,2)$-choosable. This paper strengthens the result of Meng, Puleo and Zhu and shows that all the other bipartite $3$-choice critical graphs are $(4m,2m)$-choosable for every integer $m$.
67 - Omid Amini 2007
A $k$-frugal colouring of a graph $G$ is a proper colouring of the vertices of $G$ such that no colour appears more than $k$ times in the neighbourhood of a vertex. This type of colouring was introduced by Hind, Molloy and Reed in 1997. In this paper , we study the frugal chromatic number of planar graphs, planar graphs with large girth, and outerplanar graphs, and relate this parameter with several well-studied colourings, such as colouring of the square, cyclic colouring, and $L(p,q)$-labelling. We also study frugal edge-colourings of multigraphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا