ﻻ يوجد ملخص باللغة العربية
A $k$-frugal colouring of a graph $G$ is a proper colouring of the vertices of $G$ such that no colour appears more than $k$ times in the neighbourhood of a vertex. This type of colouring was introduced by Hind, Molloy and Reed in 1997. In this paper, we study the frugal chromatic number of planar graphs, planar graphs with large girth, and outerplanar graphs, and relate this parameter with several well-studied colourings, such as colouring of the square, cyclic colouring, and $L(p,q)$-labelling. We also study frugal edge-colourings of multigraphs.
3-list colouring is an NP-complete decision problem. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving 3-list colouring on permutation graphs.
A graph is called $P_t$-free if it does not contain the path on $t$ vertices as an induced subgraph. Let $H$ be a multigraph with the property that any two distinct vertices share at most one common neighbour. We show that the generating function for
List colouring is an NP-complete decision problem even if the total number of colours is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list colouring of permutation graphs with a bounded total numb
A (proper) colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an acyc
This paper disproves a conjecture of Wang, Wu, Yan and Xie, and answers in negative a question in Dvorak, Pekarek and Sereni. In return, we pose five open problems.