ﻻ يوجد ملخص باللغة العربية
The Group-Lasso is a well-known tool for joint regularization in machine learning methods. While the l_{1,2} and the l_{1,infty} version have been studied in detail and efficient algorithms exist, there are still open questions regarding other l_{1,p} variants. We characterize conditions for solutions of the l_{1,p} Group-Lasso for all p-norms with 1 <= p <= infty, and we present a unified active set algorithm. For all p-norms, a highly efficient projected gradient algorithm is presented. This new algorithm enables us to compare the prediction performance of many variants of the Group-Lasso in a multi-task learning setting, where the aim is to solve many learning problems in parallel which are coupled via the Group-Lasso constraint. We conduct large-scale experiments on synthetic data and on two real-world data sets. In accordance with theoretical characterizations of the different norms we observe that the weak-coupling norms with p between 1.5 and 2 consistently outperform the strong-coupling norms with p >> 2.
Many applications generate data with an intrinsic network structure such as time series data, image data or social network data. The network Lasso (nLasso) has been proposed recently as a method for joint clustering and optimization of machine learni
We present a new approach to solve the sparse approximation or best subset selection problem, namely find a $k$-sparse vector ${bf x}inmathbb{R}^d$ that minimizes the $ell_2$ residual $lVert A{bf x}-{bf y} rVert_2$. We consider a regularized approach
Although the optimization objectives for learning neural networks are highly non-convex, gradient-based methods have been wildly successful at learning neural networks in practice. This juxtaposition has led to a number of recent studies on provable
A generalized gamification framework is introduced as a form of smart infrastructure with potential to improve sustainability and energy efficiency by leveraging humans-in-the-loop strategy. The proposed framework enables a Human-Centric Cyber-Physic
In many high dimensional classification or regression problems set in a biological context, the complete identification of the set of informative features is often as important as predictive accuracy, since this can provide mechanistic insight and co