ترغب بنشر مسار تعليمي؟ اضغط هنا

Reexamination of the Infrared Excess-Ultraviolet Slope Relation of Local Galaxies

91   0   0.0 ( 0 )
 نشر من قبل Tsutomu Takeuchi T.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relation between the ratio of infrared (IR) and ultraviolet (UV) flux densities (the infrared excess: IRX) and the slope of the UV spectrum (beta) of galaxies plays a fundamental role in the evaluation of the dust attenuation of star forming galaxies especially at high redshifts. Many authors, however, pointed out that there is a significant dispersion and/or deviation from the originally proposed IRX-beta relation depending on sample selection. We reexamined the IRX-beta relation by measuring the far- and near-UV flux densities of the original sample galaxies with GALEX and AKARI imaging data, and constructed a revised formula. We found that the newly obtained IRX values were lower than the original relation because of the significant underestimation of the UV flux densities of the galaxies, caused by the small aperture of IUE, Further, since the original relation was based on IRAS data which covered a wavelength range of lambda = 42--122mum, using the data from AKARI which has wider wavelength coverage toward longer wavelengths, we obtained an appropriate IRX-beta relation with total dust emission (TIR): log(L_{rm TIR}/L_{rm FUV}) = log [10^{0.4(3.06+1.58beta)}-1] +0.22. This new relation is consistent with most of the preceding results for samples selected at optical and UV, though there is a significant scatter around it. We also found that even the quiescent class of IR galaxies follows this new relation, though luminous and ultraluminous IR galaxies distribute completely differently as well known before.



قيم البحث

اقرأ أيضاً

In this note we identify and characterize the ultraviolet-infrared color-magnitude relation of star-forming galaxies. The ultraviolet to mid-infrared flux ratios of star-forming galaxies span over two orders of magnitude and show a clear dependence o n absolute magnitude from M_W3 ~ -13 to M_W3 ~ -25, which may present problems for models of galaxy spectral energy distributions that have been largely verified on ~L* galaxies. The color-magnitude relation of star-forming galaxies illustrates the broadband spectral diversity of star-forming galaxies that results from established correlations between the physical properties and mass, including the mass-metallicity relation.
We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) and Herschel ATLAS (H-ATLAS) surveys to compare the relationship between various dust obscuration measures in galaxies. We explore the connections between the ultraviolet (UV) spect ral slope, $beta$, the Balmer decrement, and the far infrared (IR) to $150,$nm far ultraviolet (FUV) luminosity ratio. We explore trends with galaxy mass, star formation rate (SFR) and redshift in order to identify possible systematics in these various measures. We reiterate the finding of other authors that there is a large scatter between the Balmer decrement and the $beta$ parameter, and that $beta$ may be poorly constrained when derived from only two broad passbands in the UV. We also emphasise that FUV derived SFRs, corrected for dust obscuration using $beta$, will be overestimated unless a modified relation between $beta$ and the attenuation factor is used. Even in the optimum case, the resulting SFRs have a significant scatter, well over an order of magnitude. While there is a stronger correlation between the IR to FUV luminosity ratio and $beta$ parameter than with the Balmer decrement, neither of these correlations are particularly tight, and dust corrections based on $beta$ for high redshift galaxy SFRs must be treated with caution. We conclude with a description of the extent to which the different obscuration measures are consistent with each other as well as the effects of including other galactic properties on these correlations.
Far-ultraviolet (FUV) and far-infrared (FIR) luminosity functions (LFs) of galaxies show a strong evolution from $z = 0$ to $z = 1$, but the FIR LF evolves much stronger than the FUV one. The FUV is dominantly radiated from newly formed short-lived O B stars, while the FIR is emitted by dust grains heated by the FUV radiation field. It is known that dust is always associated with star formation activity. Thus, both FUV and FIR are tightly related to the star formation in galaxies, but in a very complicated manner. In order to disentangle the relation between FUV and FIR emissions, we estimate the UV-IR bivariate LF (BLF) of galaxies with {sl GALEX} and {sl AKARI} All-Sky Survey datasets. Recently we invented a new mathematical method to construct the BLF with given marginals and prescribed correlation coefficient. This method makes use of a tool from mathematical statistics, so called copula. The copula enables us to construct a bivariate distribution function from given marginal distributions with prescribed correlation and/or dependence structure. With this new formulation and FUV and FIR univariate LFs, we analyze various FUV and FIR data with {sl GALEX}, {sl Spitzer}, and {sl AKARI} to estimate the UV-IR BLF. The obtained BLFs naturally explain the nonlinear complicated relation between FUV and FIR emission from star-forming galaxies. Though the faint-end of the BLF was not well constrained for high-$z$ samples, the estimated linear correlation coefficient $rho$ was found to be very high, and is remarkably stable with redshifts (from 0.95 at $z = 0$ to 0.85 at $z = 1.0$). This implies the evolution of the UV-IR BLF is mainly due to the different evolution of the univariate LFs, and may not be controlled by the dependence structure.
Although the optical colour-magnitude diagram of galaxies allows one to select red sequence objects, neither can it be used for galaxy classification without additional observational data such as spectra or high-resolution images, nor to identify blu e galaxies at unknown redshifts. We show that adding the near ultraviolet colour to the optical CMD reveals a tight relation in the three-dimensional colour-colour-magnitude space smoothly continuing from the blue cloud to the red sequence. We found that 98 per cent of 225,000 low-redshift (Z<0.27) galaxies follow a smooth surface g-r=F(M,NUV-r) with a standard deviation of 0.03-0.07 mag making it the tightest known galaxy photometric relation. There is a strong correlation between morphological types and integrated NUV-r colours. Rare galaxy classes such as E+A or tidally stripped systems become outliers that occupy distinct regions in the 3D parameter space. Using stellar population models for galaxies with different SFHs, we show that (a) the (NUV-r, g-r) distribution is formed by objects having constant and exponentially declining SFR with different characteristic timescales; (b) colour evolution for exponentially declining models goes along the relation suggesting its weak evolution up-to a redshift of 0.9; (c) galaxies with truncated SFHs have very short transition phase offset from the relation thus explaining the rareness of E+A galaxies. This relation can be used as a powerful galaxy classification tool when morphology remains unresolved. Its mathematical consequence is the photometric redshift estimates from 3 broad-band photometric points. This approach works better than most existing photometric redshift techniques applied to multi-colour datasets. Therefore, the relation can be used as an efficient selection technique for galaxies at intermediate redshifts (0.3<Z<0.8) using optical imaging surveys.
We present an application of the da Cunha, Charlot & Elbaz (2008) model of the spectral energy distribution (SEDs) of galaxies from the ultraviolet to far-infrared to a small pilot sample of purely star-forming Ultra-Luminous Infrared Galaxies (ULIRG s). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model which accounts for the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid- and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, as well as temperatures and masses of different dust components and plausible star formation histories. We find that, although the ultraviolet to near-infrared emission represents only a small fraction of the total power radiated by ULIRGs, observations in this wavelength range are important to understand the properties of the stellar populations and dust attenuation in the diffuse ISM of these galaxies. Furthermore, our analysis indicates that the use of mid-infrared spectroscopy from the Infrared Spectrograph on the Spitzer Space Telescope is crucial to obtain realistic estimates of the extinction to the central energy source, mainly via the depth of the 9.7-micron silicate feature, and thus accurately constrain the total energy balance. Our findings are consistent with the notion that, in the local Universe, the physical properties of ULIRGs are fundamentally different from those of galaxies with lower infrared luminosities and that local ULIRGs are the result of merger-induced starbursts. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا