ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully massive Scheme for Jet Production in DIS

243   0   0.0 ( 0 )
 نشر من قبل Piotr Kotko
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a consistent treatment of heavy quarks for jet production in DIS at NLO accuracy. The method is based on the ACOT massive factorization scheme and dipole subtraction method for jets. The last had to be however extended in order to take into account initial state splittings with heavy quarks. We constructed relevant kinematics and dipole splitting functions together with their integrals. We partially implemented the method in a MC program and checked against the known inclusive result for charm structure function.



قيم البحث

اقرأ أيضاً

We propose a method for calculating DIS jet production cross sections in QCD at NLO accuracy with consistent treatment of heavy quarks. The scheme relies on the dipole subtraction method for jets, which we extend to all possible initial state splitti ngs with heavy partons, so that the Aivazis-Collins-Olness-Tung massive collinear factorization scheme (ACOT) can be applied. As a first check of the formalism we recover the ACOT result for the heavy quark structure function using a dedicated Monte Carlo program.
We compute the $O(alpha_s alpha^2)$ and $O(alpha_s^2 alpha)$ contributions to the production cross section of a $Z$ boson with one $b$ jet at the Large Hadron Collider (LHC), and study their phenomenological relevance for LHC physics. The accurate pr ediction of hadronic $Z+b$-jet production is needed to control a background that greatly affects both the measurement of Higgs-boson properties and searches of new physics at the LHC. At the same time it could enable the first precise measurement of the $b$-quark parton distribution function. In this context $b$-quark mass effects become relevant and need to be studied with care, both at the level of the hard process and at the level of the initial- and final-state parton evolution. It is the aim of this paper to explore some of these issues in the framework of a massive 5 Flavor Scheme and to assess the need for both the inclusion of electroweak corrections, in addition to QCD corrections, and $b$-quark mass effects in the prediction of total and differential cross sections for hadronic $Z+b$-jet production.
131 - G. Beuf , T. Lappi , 2021
In this work, we will present the first complete calculation of the one-loop longitudinal photon-to-quark-antiquark light cone wave function, with massive quarks. The quark masses are renormalized in the pole mass scheme. The result is used to calcul ate the next-to-leading order correction to the high energy Deep Inelastic Scattering longitudinal structure function on a dense target in the dipole factorization framework. For massless quarks the next-to-leading order correction was already known to be sizeable, and our result makes it possible to evaluate it also for massive quarks.
We consider forward neutron production in DIS within fracture functions formalism. By performing a QCD analysis of available data we extract proton-to-neutron fracture functions exploiting a method which is in close relation with the factorisation theorem for this class of processes.
By using a recently obtained set of Lambda fracture functions, we present predictions for Lambda production in the target fragmentation region of Semi-Inclusive Deep Inelastic Scattering in CLAS@12 GeV kinematics, supplemented with a conservative err or estimates. We discuss a number of observables sensitive to the assumptions of the underlying theory and many of the assumptions of the proposed phenomenological model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا