ترغب بنشر مسار تعليمي؟ اضغط هنا

The heating of dust by old stellar populations in the Bulge of M31

157   0   0.0 ( 0 )
 نشر من قبل Brent Groves
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use new Herschel multi-band imaging of the Andromeda galaxy to analyze how dust heating occurs in the central regions of galaxy spheroids that are essentially devoid of young stars. We construct a dust temperature map of M31 through fitting modified blackbody SEDs to the Herschel data, and find that the temperature within 2 kpc rises strongly from the mean value in the disk of 17 pm 1K to sim35K at the centre. UV to near-IR imaging of the central few kpc shows directly the absence of young stellar populations, delineates the radial profile of the stellar density, and demonstrates that even the near-UV dust extinction is optically thin in M31s bulge. This allows the direct calculation of the stellar radiation heating in the bulge, Uast(r), as a function of radius. The increasing temperature profile in the centre matches that expected from the stellar heating, i.e. that the dust heating and cooling rates track each other over nearly two orders of magnitude in Uast. The modelled dust heating is in excess of the observed dust temperatures, suggesting that it is more than sufficient to explain the observed IR emission. Together with the wavelength dependent absorption cross section of the dust, this demonstrates directly that it is the optical, not UV, radiation that sets the heating rate. This analysis shows that neither young stellar populations nor stellar near-UV radiation are necessary to heat dust to warm temperatures in galaxy spheroids. Rather, it is the high densities of Gyr-old stellar populations that provide a sufficiently strong diffuse radiation field to heat the dust. To the extent which these results pertain to the tenuous dust found in the centres of early-type galaxies remains yet to be explored.



قيم البحث

اقرأ أيضاً

Within the framework of the DustPedia project we investigate the properties of cosmic dust and its interaction with the stellar radiation (originating from different stellar populations) for 814 galaxies in the nearby Universe, all observed by the He rschel Space Observatory. We take advantage of the widely used galaxy SED fitting code CIGALE, properly adapted to include the state-of-the-art dust model THEMIS. Using the DustPedia photometry we determine the physical properties of the galaxies, such as, the dust and stellar mass, the star-formation rate, the bolometric luminosity as well as the unattenuated and the absorbed by dust stellar light, for both the old (> 200 Myr) and young (<= 200 Myr) stellar populations. We show how the mass of stars, dust, and atomic gas, as well as the star-formation rate and the dust temperature vary between galaxies of different morphologies and provide recipes to estimate these parameters given their Hubble stage (T). We find a mild correlation between the mass fraction of the small a-C(:H) grains with the specific star-formation rate. On average, young stars are very efficient in heating the dust, with absorption fractions reaching as high as ~77% of the total, unattenuated luminosity of this population. On the other hand, the maximum absorption fraction of old stars is ~24%. Dust heating in early-type galaxies is mainly due to old stars, up to a level of ~90%. Young stars progressively contribute more for `typical spiral galaxies and they become the dominant source of dust heating for Sm type and irregular galaxies, donating up to ~60% of their luminosity to this purpose. Finally, we find a strong correlation of the dust heating fraction by young stars with morphology and the specific star-formation rate.
We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We describe their two-dimensional maps taking into account the dust distribution in M31. 80% of the values of our age measurements are larger than 10 Gyr. The central 100 arcsec of M31 are dominated by the stars of the classical bulge of M31. They are old (11-13 Gyr), metal-rich (as high as [Z/H]~0.35 dex) at the center with a negative gradient outwards and enhanced in alpha-elements ([alpha/Fe]~ 0.28+- 0.01 dex). The bar stands out in the metallicity map, where an almost solar value of [Z/H] (~0.02+-0.01 dex) with no gradient is observed along the bar position angle (55.7 deg) out to 600 arcsec from the center. In contrast, no signature of the bar is seen in the age and [alpha/Fe] maps, that are approximately axisymmetric, delivering a mean age and overabundance for the bar and the boxy-peanut bulge of 10-13 Gyr and 0.25-0.27 dex, respectively. The boxy/peanut-bulge has almost solar metallicity (-0.04+- 0.01 dex). The mass-to-light ratio of the three components is approximately constant at M/LV ~ 4.4-4.7 Msol/Lsol. The disk component at larger distances is made of a mixture of stars, as young as 3-4 Gyr, with solar metallicity and smaller M/LV (~3+-0.1 Msol/Lsol). We propose a two-phase formation scenario for the inner region of M31, where most of the stars of the classical bulge come into place together with a proto-disk, where a bar develops and quickly transforms it into a boxy-peanut bulge. Star formation continues in the bulge region, producing stars younger than 10 Gyr, in particular along the bar, enhancing its metallicity. The disk component appears to build up on longer time-scales.
114 - Carine Babusiaux 2012
Until recently our knowledge of the Galactic Bulge stellar populations was based on the study of a few low extinction windows. Large photometric and spectroscopic surveys are now underway to map large areas of the bulge. They probe several complex st ructures which are still to be fully characterized as well as their links with the inner disc, the thick disc and the inner halo. I will review our current, rapidly increasing, knowledge of the bulge stellar populations and the new insight expected towards the Gaia era to disentangle the formation history of the Galactic inner regions.
182 - Hui Dong 2016
We map the dust distribution in the central 180 (~680 pc) region of the M31 bulge, based on HST/WFC3 and ACS observations in ten bands from near-ultraviolet (2700 A) to near-infrared (1.5 micron). This large wavelength coverage gives us great leverag e to detect not only dense dusty clumps, but also diffuse dusty molecular gas. We fit a pixel-by-pixel spectral energy distributions to construct a high-dynamic-range extinction map with unparalleled angular resolution (~0.5 , i.e., ~2 pc) and sensitivity (the extinction uncertainty, delta A_V~0.05). In particular, the data allow to directly fit the fractions of starlight obscured by individual dusty clumps, and hence their radial distances in the bulge. Most of these clumps seem to be located in a thin plane, which is tilted with respect to the M31 disk and appears face-on. We convert the extinction map into a dust mass surface density map and compare it with that derived from the dust emission as observed by Herschel . The dust masses in these two maps are consistent with each other, except in the low-extinction regions, where the mass inferred from the extinction tends to be underestimated. Further, we use simulations to show that our method can be used to measure the masses of dusty clumps in Virgo cluster early-type galaxies to an accuracy within a factor of ~2.
Using new, homogeneous, long-slit spectroscopy in the wavelength range from ~0.35 to ~1micron, we study radial gradients of optical and near-infrared (NIR) IMF-sensitive features along the major axis of the bulge of M31, out to a galacto-centric dist ance of ~200 (~800pc). Based on state-of-the-art stellar population synthesis models with varying Na abundance ratio, we fit a number of spectral indices, from different chemical species (including TiOs, Ca, and Na indices), to constrain the low-mass (<0.5M_Sun) end slope (i.e. the fraction of low-mass stars) of the stellar IMF, as a function of galacto-centric distance. Outside a radial distance of ~10, we infer an IMF similar to a Milky-Way-like distribution, while at small galacto-centric distances, an IMF radial gradient is detected, with a mildly bottom-heavy IMF in the few inner arcsec. We are able to fit Na features (both NaD and NaI8190), without requiring extremely high Na abundance ratios. [Na/Fe] is ~0.4dex for most of the bulge, rising up to ~0.6dex in the innermost radial bins. Our results imply an overall, luminosity-weighted, IMF and mass-to-light ratio for the M31 bulge, consistent with those for a Milky-Way-like distribution, in contrast to results obtained, in general, for most massive early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا