ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar populations in the Galactic Bulge (review)

105   0   0.0 ( 0 )
 نشر من قبل Carine Babusiaux
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Carine Babusiaux




اسأل ChatGPT حول البحث

Until recently our knowledge of the Galactic Bulge stellar populations was based on the study of a few low extinction windows. Large photometric and spectroscopic surveys are now underway to map large areas of the bulge. They probe several complex structures which are still to be fully characterized as well as their links with the inner disc, the thick disc and the inner halo. I will review our current, rapidly increasing, knowledge of the bulge stellar populations and the new insight expected towards the Gaia era to disentangle the formation history of the Galactic inner regions.



قيم البحث

اقرأ أيضاً

We re-analyse photometric near-infrared data in order to investigate why it is so hard to get a consensus for the shape and density law of the bulge, as seen from the literature. To solve the problem we use the Besancon Galaxy Model to provide a sche me for parameter fitting of the structural characteristics of the bulge region. The fitting process allows the determination of the global shape of the bulge main structure. We explore various parameters and shape for the bulge/bar structure based on Ferrers ellipsoids and fit the shape of the inner disc in the same process. The results show that the main structure is a quite standard triaxial boxy bar/bulge with an orientation of about 13 degree with respect to the Sun-centre direction. But the fit is greatly improved when we add a second structure, which is a longer and thicker ellipsoid. We emphasize that our first ellipsoid represent the main boxy bar of the Galaxy, and that the thick bulge could be either a classical bulge slightly flattened by the effect of the bar potential, or a inner thick disc counterpart. We show that the double clump seen at intermediate latitudes can be reproduced by adding a slight flare to the bar. In order to better characterize the populations, we further simulate several fields which have been surveyed in spectroscopy and for which metallicity distribution function (MDF) are available. The model is in good agreement with these MDF along the minor axis if we assume that the main bar has a mean solar metallicity and the second thicker population has a lower metallicity. It then creates naturally a vertical metallicity gradient by the mixing of the two poulations. (abridged)
102 - M. Zoccali 2009
The Galactic bulge is the central spheroid of our Galaxy, containing about one quarter of the total stellar mass of the Milky Way (M_bulge=1.8x10^10 M_sun; Sofue, Honma & Omodaka 2009). Being older than the disk, it is the first massive component of the Galaxy to have collapsed into stars. Understanding its structure, and the properties of its stellar population, is therefore of great relevance for galaxy formation models. I will review our current knowledge of the bulge properties, with special emphasis on chemical abundances, recently measured for several hundred stars.
The Milky Way is the only galaxy for which we can resolve individual stars at all evolutionary phases, from the Galactic center to the outskirt. The last decade, thanks to the advent of near IR detectors and 8 meter class telescopes, has seen a great progress in the understanding of the Milky Way central region: the bulge. Here we review the most recent results regarding the bulge structure, age, kinematics and chemical composition. These results have profound implications for the formation and evolution of the Milky Way and of galaxies in general. This paper provides a summary on our current understanding of the Milky Way bulge, intended mainly for workers on other fields.
108 - G. Bono 2013
We discuss the stellar content of the Galactic Center, and in particular, recent estimates of the star formation rate (SFR). We discuss pros and cons of the different stellar tracers and focus our attention on the SFR based on the three classical Cep heids recently discovered in the Galactic Center. We also discuss stellar populations in field and cluster stars and present some preliminary results based on near-infrared photometry of a field centered on the young massive cluster Arches. We also provide a new estimate of the true distance modulus to the Galactic Center and we found 14.49$pm$0.02(standard)$pm$0.10(systematic) mag (7.91$pm0.08pm0.40$ kpc). Current estimate agrees quite well with similar photometric and kinematic distance determinations available in the literature. We also discuss the metallicity gradient of the thin disk and the sharp change in the slope when moving across the edge of the inner disk, the Galactic Bar and the Galactic Center. The difference becomes even more compelling if we take into account that metal abundances are based on young stellar tracers (classical Cepheids, Red Supergiants, Luminous Blue Variables). Finally, we briefly outline the possible mechanisms that might account for current empirical evidence.
114 - M. Portail 2015
We construct dynamical models of the Milky Ways Box/Peanut (B/P) bulge, using the recently measured 3D density of Red Clump Giants (RCGs) as well as kinematic data from the BRAVA survey. We match these data using the NMAGIC Made-to-Measure method, st arting with N-body models for barred discs in different dark matter haloes. We determine the total mass in the bulge volume of the RCGs measurement (+-2.2 x +- 1.4 x +- 1.2 kpc) with unprecedented accuracy and robustness to be 1.84 +- 0.07 x10^10 Msun. The stellar mass in this volume varies between 1.25-1.6 x10^10 Msun, depending on the amount of dark matter in the bulge. We evaluate the mass-to-light and mass-to-clump ratios in the bulge and compare them to theoretical predictions from population synthesis models. We find a mass-to-light ratio in the K-band in the range 0.8-1.1. The models are consistent with a Kroupa or Chabrier IMF, but a Salpeter IMF is ruled out for stellar ages of 10 Gyr. To match predictions from the Zoccali IMF derived from the bulge stellar luminosity function requires about 40% or 0.7 x10^10 Msun dark matter in the bulge region. The BRAVA data together with the RCGs 3D density imply a low pattern speed for the Galactic B/P bulge of 25-30 km.s-1.kpc-1. This would place the Galaxy among the slow rotators (R >= 1.5). Finally, we show that the Milky Ways B/P bulge has an off-centred X structure, and that the stellar mass involved in the peanut shape accounts for at least 20% of the stellar mass of the bulge, significantly larger than previously thought.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا