ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for the PN coefficients for the Energy flux through Gravitational Waves from Black-Hole Binaries using Markov Chain Monte Carlo

324   0   0.0 ( 0 )
 نشر من قبل Prayush Kumar
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Prayush Kumar




اسأل ChatGPT حول البحث

In this work, the focus is on the improvement of the existing post-Newtonian approximation for the gravitational flux from Super Massive Black Hole Binaries. In order to improve the existing templates for LISA, we need more accurate post-Newtonian expansions for the gravitational flux. Stochastic search techniques like the Markov Chain Monte Carlo (MCMC) have been used extensively for searching for sky parameters etc. The idea is to combine the two and approach the problem of finding post-Newtonian coefficients using MCMC. It has been shown that matching against a 5.5PN signal, with noise, the last coefficient can be found by MCMC very easily and displays fast convergence. Also the space for higher dimensional searches are explored.



قيم البحث

اقرأ أيضاً

Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave interferometers (LIGO, Virgo, and GEO-600). We present parameter-estima tion simulations for inspirals of black-hole--neutron-star binaries using Markov-chain Monte-Carlo methods. As a specific example of the power of these methods, we consider source localisation in the sky and analyse the degeneracy in it when data from only two detectors are used. We focus on the effect that the black-hole spin has on the localisation estimation. We also report on a comparative Markov-chain Monte-Carlo analysis with two different waveform families, at 1.5 and 3.5 post-Newtonian order.
We present a Markov-chain Monte-Carlo (MCMC) technique to study the source parameters of gravitational-wave signals from the inspirals of stellar-mass compact binaries detected with ground-based gravitational-wave detectors such as LIGO and Virgo, fo r the case where spin is present in the more massive compact object in the binary. We discuss aspects of the MCMC algorithm that allow us to sample the parameter space in an efficient way. We show sample runs that illustrate the possibilities of our MCMC code and the difficulties that we encounter.
167 - Jim Healy 2013
Previous analytic and numerical calculations suggest that, at each instant, the emission from a precessing black hole binary closely resembles the emission from a nonprecessing analog. In this paper we quantitatively explore the validity and limitati ons of that correspondence, extracting the radiation from a large collection of roughly two hundred generic black hole binary merger simulations both in the simulation frame and in a corotating frame that tracks precession. To a first approximation, the corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited frequency interval defined using a fiducial detector (here, advanced LIGO) and the sources total mass $M$. By restricting attention to masses $Min 100, 1000 M_odot$, we insure our comparisons are sensitive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every one of our precessing simulations can be fit by some physically similar member of the texttt{IMRPhenomB} phenomenological waveform family to better than 95%; most fit significantly better. The best-fit parameters at low and high mass correspond to natural physical limits: the pre-merger orbit and post-merger perturbed black hole. Our results suggest that physically-motivated synthetic signals can be derived by viewing radiation from suitable nonprecessing binaries in a suitable nonintertial reference frame. While a good first approximation, precessing systems have degrees of freedom (i.e., the transverse spins) which a nonprecessing simulation cannot reproduce. We quantify the extent to which these missing degrees of freedom limit the utility of synthetic precessing signals for detection and parameter estimation.
Large dark matter overdensities can form around black holes of astrophysical and primordial origin as they form and grow. This dark dress inevitably affects the dynamical evolution of binary systems, and induces a dephasing in the gravitational wavef orm that can be probed with future interferometers. In this paper, we introduce a new analytical model to rapidly compute gravitational waveforms in presence of an evolving dark matter distribution. We then present a Bayesian analysis determining when dressed black hole binaries can be distinguished from GR-in-vacuum ones and how well their parameters can be measured, along with how close they must be to be detectable by the planned Laser Interferometer Space Antenna (LISA). We show that LISA can definitively distinguish dark dresses from standard binaries and characterize the dark matter environments around astrophysical and primordial black holes for a wide range of model parameters. Our approach can be generalized to assess the prospects for detecting, classifying, and characterizing other environmental effects in gravitational wave physics.
Gravitational waves (GWs) from merging black holes allow for unprecedented probes of strong-field gravity. Testing gravity in this regime requires accurate predictions of gravitational waveform templates in viable extensions of General Relativity. We concentrate on scalar Gauss-Bonnet gravity, one of the most compelling classes of theories appearing as low-energy limit of quantum gravity paradigms, which introduces quadratic curvature corrections to gravity coupled to a scalar field and allows for black hole solutions with scalar-charge. Focusing on inspiralling black hole binaries, we compute the leading-order corrections due to curvature nonlinearities in the GW and scalar waveforms, showing that the new contributions, beyond merely the effect of scalar field, appear at first post-Newtonian order in GWs. We provide ready-to-implement GW polarizations and phasing. Computing the GW phasing in the Fourier domain, we perform a parameter-space study to quantify the detectability of deviations from General Relativity. Our results lay important foundations for future precision tests of gravity with both parametrized and theory-specific searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا