ﻻ يوجد ملخص باللغة العربية
Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave interferometers (LIGO, Virgo, and GEO-600). We present parameter-estimation simulations for inspirals of black-hole--neutron-star binaries using Markov-chain Monte-Carlo methods. As a specific example of the power of these methods, we consider source localisation in the sky and analyse the degeneracy in it when data from only two detectors are used. We focus on the effect that the black-hole spin has on the localisation estimation. We also report on a comparative Markov-chain Monte-Carlo analysis with two different waveform families, at 1.5 and 3.5 post-Newtonian order.
We present a Markov-chain Monte-Carlo (MCMC) technique to study the source parameters of gravitational-wave signals from the inspirals of stellar-mass compact binaries detected with ground-based gravitational-wave detectors such as LIGO and Virgo, fo
In this work, the focus is on the improvement of the existing post-Newtonian approximation for the gravitational flux from Super Massive Black Hole Binaries. In order to improve the existing templates for LISA, we need more accurate post-Newtonian ex
Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave (GW) interferometers (LIGO, Virgo, and GEO-600). We present parameter-e
Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coalescences can be modelled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to
Gravitational waves are radiative solutions of space-time dynamics predicted by Einsteins theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local