ﻻ يوجد ملخص باللغة العربية
This report presents the tool COMICS, which performs model checking and generates counterexamples for DTMCs. For an input DTMC, COMICS computes an abstract system that carries the model checking information and uses this result to compute a critical subsystem, which induces a counterexample. This abstract subsystem can be refined and concretized hierarchically. The tool comes with a command-line version as well as a graphical user interface that allows the user to interactively influence the refinement process of the counterexample.
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions
Evolution algebras are non-associative algebras. In this work we provide an extension of this class of algebras, in the context of Hilbert spaces, capable to deal with infinite-dimensional spaces. We illustrate the applicability of our approach by di
Providing compact and understandable counterexamples for violated system properties is an essential task in model checking. Existing works on counterexamples for probabilistic systems so far computed either a large set of system runs or a subset of t
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation
We consider a generalization of the Ruelle theorem for the case of continuous time problems. We present a result which we believe is important for future use in problems in Mathematical Physics related to $C^*$-Algebras We consider a finite state set