ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal epsilon-biased sets with just a little randomness

59   0   0.0 ( 0 )
 نشر من قبل Cristopher Moore
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Subsets of F_2^n that are eps-biased, meaning that the parity of any set of bits is even or odd with probability eps close to 1/2, are powerful tools for derandomization. A simple randomized construction shows that such sets exist of size O(n/eps^2), and known deterministic constructions achieve sets of size O(n/eps^3), O(n^2/eps^2), and O((n/eps^2)^{5/4}). Rather than derandomizing these sets completely in exchange for making them larger, we attempt a partial derandomization while keeping them small, constructing sets of size O(n/eps^2) with as few random bits as possible. The naive randomized construction requires O(n^2/eps^2) random bits. We give two constructions. The first uses Nisans space-bounded pseudorandom generator to partly derandomize a folklore probabilistic construction of an error-correcting code, and requires O(n log (1/eps)) bits. Our second construction requires O(n log (n/eps)) bits, but is more elementary; it adds randomness to a Legendre symbol construction on Alon, Goldreich, H{aa}stad, and Peralta, and uses Weil sums to bound high moments of the bias.

قيم البحث

اقرأ أيضاً

79 - Joshua A. Grochow 2016
Mahaneys Theorem states that, assuming $mathsf{P} eq mathsf{NP}$, no NP-hard set can have a polynomially bounded number of yes-instances at each input length. We give an exposition of a very simple unpublished proof of Manindra Agrawal whose ideas a ppear in Agrawal-Arvind (Geometric sets of low information content, Theoret. Comp. Sci., 1996). This proof is so simple that it can easily be taught to undergraduates or a general graduate CS audience - not just theorists! - in about 10 minutes, which the author has done successfully several times. We also include applications of Mahaneys Theorem to fundamental questions that bright undergraduates would ask which could be used to fill the remaining hour of a lecture, as well as an application (due to Ikenmeyer, Mulmuley, and Walter, arXiv:1507.02955) to the representation theory of the symmetric group and the Geometric Complexity Theory Program. To this author, the fact that sparsity results on NP-complete sets have an application to classical questions in representation theory says that they are not only a gem of classical theoretical computer science, but indeed a gem of mathematics.
255 - Hans U. Simon 2017
It is well known that the containment problem (as well as the equivalence problem) for semilinear sets is $log$-complete in $Pi_2^p$. It had been shown quite recently that already the containment problem for multi-dimensional linear sets is $log$-com plete in $Pi_2^p$ (where hardness even holds for a unary encoding of the numerical input parameters). In this paper, we show that already the containment problem for $1$-dimensional linear sets (with binary encoding of the numerical input parameters) is $log$-hard (and therefore also $log$-complete) in $Pi_2^p$. However, combining both restrictions (dimension $1$ and unary encoding), the problem becomes solvable in polynomial time.
The communication complexity of many fundamental problems reduces greatly when the communicating parties share randomness that is independent of the inputs to the communication task. Natural communication processes (say between humans) however often involve large amounts of shared correlations among the communicating players, but rarely allow for perfect sharing of randomness. Can the communication complexity benefit from shared correlations as well as it does from shared randomness? This question was considered mainly in the context of simultaneous communication by Bavarian et al. (ICALP 2014). In this work we study this problem in the standard interactive setting and give some general results. In particular, we show that every problem with communication complexity of $k$ bits with perfectly shared randomness has a protocol using imperfectly shared randomness with complexity $exp(k)$ bits. We also show that this is best possible by exhibiting a promise problem with complexity $k$ bits with perfectly shared randomness which requires $exp(k)$ bits when the randomness is imperfectly shared. Along the way we also highlight some other basic problems such as compression, and agreement distillation, where shared randomness plays a central role and analyze the complexity of these problems in the imperfectly shared randomness model. The technical highlight of this work is the lower bound that goes into the result showing the tightness of our general connection. This result builds on the intuition that communication with imperfectly shared randomness needs to be less sensitive to its random inputs than communication with perfectly shared randomness. The formal proof invokes results about the small-set expansion of the noisy hypercube and an invariance principle to convert this intuition to a proof, thus giving a new application domain for these fundamental results.
In analogy with epsilon-biased sets over Z_2^n, we construct explicit epsilon-biased sets over nonabelian finite groups G. That is, we find sets S subset G such that | Exp_{x in S} rho(x)| <= epsilon for any nontrivial irreducible representation rho. Equivalently, such sets make Gs Cayley graph an expander with eigenvalue |lambda| <= epsilon. The Alon-Roichman theorem shows that random sets of size O(log |G| / epsilon^2) suffice. For groups of the form G = G_1 x ... x G_n, our construction has size poly(max_i |G_i|, n, epsilon^{-1}), and we show that a set S subset G^n considered by Meka and Zuckerman that fools read-once branching programs over G is also epsilon-biased in this sense. For solvable groups whose abelian quotients have constant exponent, we obtain epsilon-biased sets of size (log |G|)^{1+o(1)} poly(epsilon^{-1}). Our techniques include derandomized squaring (in both the matrix product and tensor product senses) and a Chernoff-like bound on the expected norm of the product of independently random operators that may be of independent interest.
97 - Vegard Fjellbo 2020
The Barratt nerve, denoted $B$, is the endofunctor that takes a simplicial set to the nerve of the poset of its non-degenerate simplices. The ordered simplicial complex $BSd, X$, namely the Barratt nerve of the Kan subdivision $Sd, X$, is a triangula tion of the original simplicial set $X$ in the sense that there is a natural map $BSd, Xto X$ whose geometric realization is homotopic to some homeomorphism. This is a refinement to the result that any simplicial set can be triangulated. A simplicial set is said to be regular if each of its non-degenerate simplices is embedded along its $n$-th face. That $BSd, Xto X$ is a triangulation of $X$ is a consequence of the fact that the Kan subdivision makes simplicial sets regular and that $BX$ is a triangulation of $X$ whenever $X$ is regular. In this paper, we argue that $B$, interpreted as a functor from regular to non-singular simplicial sets, is not just any triangulation, but in fact the best. We mean this in the sense that $B$ is the left Kan extension of barycentric subdivision along the Yoneda embedding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا