ﻻ يوجد ملخص باللغة العربية
The communication complexity of many fundamental problems reduces greatly when the communicating parties share randomness that is independent of the inputs to the communication task. Natural communication processes (say between humans) however often involve large amounts of shared correlations among the communicating players, but rarely allow for perfect sharing of randomness. Can the communication complexity benefit from shared correlations as well as it does from shared randomness? This question was considered mainly in the context of simultaneous communication by Bavarian et al. (ICALP 2014). In this work we study this problem in the standard interactive setting and give some general results. In particular, we show that every problem with communication complexity of $k$ bits with perfectly shared randomness has a protocol using imperfectly shared randomness with complexity $exp(k)$ bits. We also show that this is best possible by exhibiting a promise problem with complexity $k$ bits with perfectly shared randomness which requires $exp(k)$ bits when the randomness is imperfectly shared. Along the way we also highlight some other basic problems such as compression, and agreement distillation, where shared randomness plays a central role and analyze the complexity of these problems in the imperfectly shared randomness model. The technical highlight of this work is the lower bound that goes into the result showing the tightness of our general connection. This result builds on the intuition that communication with imperfectly shared randomness needs to be less sensitive to its random inputs than communication with perfectly shared randomness. The formal proof invokes results about the small-set expansion of the noisy hypercube and an invariance principle to convert this intuition to a proof, thus giving a new application domain for these fundamental results.
Two parties wish to carry out certain distributed computational tasks, and they are given access to a source of correlated random bits. It allows the parties to act in a correlated manner, which can be quite useful. But what happens if the shared ran
A Santha-Vazirani (SV) source is a sequence of random bits where the conditional distribution of each bit, given the previous bits, can be partially controlled by an adversary. Santha and Vazirani show that deterministic randomness extraction from th
Information-theoretic methods have proven to be a very powerful tool in communication complexity, in particular giving an elegant proof of the linear lower bound for the two-party disjointness function, and tight lower bounds on disjointness in the m
Steganographic protocols enable one to embed covert messages into inconspicuous data over a public communication channel in such a way that no one, aside from the sender and the intended receiver, can even detect the presence of the secret message. I
We present a general theory of entanglement-assisted quantum convolutional coding. The codes have a convolutional or memory structure, they assume that the sender and receiver share noiseless entanglement prior to quantum communication, and they are