ﻻ يوجد ملخص باللغة العربية
We study the effects of delayed coupling on timing and pattern formation in spatially extended systems of dynamic oscillators. Starting from a discrete lattice of coupled oscillators, we derive a generic continuum theory for collective modes of long wavelength. We use this approach to study spatial phase profiles of cellular oscillators in the segmentation clock, a dynamic patterning system of vertebrate embryos. Collective wave patterns result from the interplay of coupling delays and moving boundary conditions. We show that the phase profiles of collective modes depend on coupling delays.
We investigate the diffusion coefficient of the time integral of the Kuramoto order parameter in globally coupled nonidentical phase oscillators. This coefficient represents the deviation of the time integral of the order parameter from its mean valu
Collective behavior of pulse-coupled oscillators has been investigated widely. As an example of pulse-coupled networks, fireflies display many kinds of flashing patterns. Mirollo and Strogatz (1990) proposed a pulse-coupled oscillator model to explai
A dead zone in the interaction between two dynamical systems is a region of their joint phase space where one system is insensitive to the changes in the other. These can arise in a number of contexts, and their presence in phase interaction function
This paper addresses the amplitude and phase dynamics of a large system non-linear coupled, non-identical damped harmonic oscillators, which is based on recent research in coupled oscillation in optomechanics. Our goal is to investigate the existence
Spontaneous synchronization is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collect