ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of supercurrents on vortices formation in polariton condensates

64   0   0.0 ( 0 )
 نشر من قبل Carlos Anton Mr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observation of quantized vortices in non-equilibrium polariton condensates has been reported either by spontaneous formation and pinning in the presence of disorder or by imprinting them onto the signal or idler of an optical parametric oscillator (OPO). Here, we report a detailed analysis of the creation and annihilation of polariton vortex-antivortex pairs in the signal state of a polariton OPO by means of a short optical Gaussian pulse at a certain finite pump wave-vector. A time-resolved, interferometric analysis of the emission allows us to extract the phase of the perturbed condensate and to reveal the dynamics of the supercurrents created by the pulsed probe. This flow is responsible for the appearance of the topological defects when counter-propagating to the underlying currents of the OPO signal.

قيم البحث

اقرأ أيضاً

We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled polariton traps. Our analysis is based on a coupled-mode theory for the generalized Gross-Pitaevskii equation, which employs an expansion in non-Hermitian, pump-dependent modes appropriate for the pumped geometry. We find that polariton-polariton and reservoir-polariton interactions play competing roles and lead to qualitatively different synchronized phases of the coupled polariton modes as pumping power is increased. Crucially, these interactions can also act against each other to hinder synchronization. We map out a phase diagram and discuss the general characteristics of these phases using a generalized Adler equation.
We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping intensity (dependent on the polariton life -time) the average polarization degree is close to zero, whilst above threshold the condensate acquires a polarization described by a (pseudospin) vector with random orientation, in general. We establish the link between second order coherence of the polariton condensate and the distribution function of its polarization. We examine also the mechanisms of polarization dephasing and relaxation.
We introduce the phenomenon of spiraling vortices in driven-dissipative (non-equilibrium) exciton-polariton condensates excited by a non-resonant pump beam. At suitable low pump intensities, these vortices are shown to spiral along circular trajector ies whose diameter is inversely proportional to the effective mass of the polaritons, while the rotation period is mass independent. Both diameter and rotation period are inversely proportional to the pump intensity. Stable spiraling patterns in the form of complexes of multiple mutually-interacting vortices are also found. At elevated pump intensities, which create a stronger homogeneous background, we observe more complex vortex trajectories resembling Spirograph patterns.
We report on the origin of energy-shifts in organic polariton condensates. The localised nature of Frenkel excitons in molecular semiconductors precludes interparticle Coulomb exchange interactions -the latter being the dominant mechanism for blueshi fts in inorganic semiconductor microcavities that bear Wannier-Mott excitons. We examine the contribution of optically induced change of the intracavity non-linear refractive index, gain induced frequency-pulling and quenching of the Rabi splitting, as well as the role of polariton-exciton and polariton-polariton scattering in the energy-shift of the polariton mode at condensation threshold in strongly coupled molecular dye microcavities. We conclude that blueshifts in organic polariton condensates arise from the interplay of the saturation of molecular optical transitions and intermolecular energy migration. Our model predicts the commonly observed step-wise increase of both the emission energy and degree of linear polarisation at polariton condensation threshold.
We explore the exciton-polariton condensation in the two degenerate orbital states. In the honeycomb lattice potential, at the third band we have two degenerate vortex-antivortex lattice states at the inequivalent K and K-points. We have observed ene rgetically degenerate condensates within the linewidth ~ 0.3 meV, and directly measured the vortex-antivortex lattice phase order of the order parameter. We have also observed the intensity anticorrelation between polariton condensates at the K- and K-points. We relate this intensity anticorrelation to the dynamical feature of polariton condensates induced by the stochastic relaxation from the common particle reservoir.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا