ﻻ يوجد ملخص باللغة العربية
We introduce isospin dependence in the cluster recognition algorithms used in the Quantum Molecular Dynamics model to describe fragment formation in heavy ion collisions. This change reduces the yields of emitted nucleons and enhances the yields of fragments, especially heavier fragments. The enhancement of neutron-rich lighter fragments mainly occurs at mid-rapidity. Consequently, isospin dependent observables, such as isotope distributions, yield ratios of $n/p$, $t/^3He$, and isoscaling parameters are affected. We also investigate how equilibration in heavy ion collisions is affected by this change.
The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of ImQMD model. The simulations show that the multiplicity of charged particles cannot estimate the im
Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the isospin effect in peripheral heavy-ion collisions has been investigated thoroughly. A coalescence approach is used for recognizing the primary fragments formed
We show that the phenomenology of isospin effects on heavy ion reactions at intermediate energies (few AGeV range) is extremely rich and can allow a ``direct study of the covariant structure of the isovector interaction in a high density hadron mediu
Collisions of 112Sn and 124Sn nuclei, which differ in their isospin asymmetry, provide information about the rate of isospin diffusion and equilibration. While several different probes can provide accurate diffusion measurements, the ratios of the mi
In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orb