ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin Diffusion Observables in heavy ion reactions

296   0   0.0 ( 0 )
 نشر من قبل Betty Tsang
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Collisions of 112Sn and 124Sn nuclei, which differ in their isospin asymmetry, provide information about the rate of isospin diffusion and equilibration. While several different probes can provide accurate diffusion measurements, the ratios of the mirror nuclei may be the simplest and most promising one. Ratios of the mass seven mirror nuclei yields are analyzed to show the rapidity, transverse momentum and impact parameter dependence of isospin diffusion.

قيم البحث

اقرأ أيضاً

152 - M.B. Tsang , T.X. Liu , L. Shi 2003
Using symmetric 112Sn+112Sn, 124Sn+124Sn collisions as references, we probe isospin diffusion in peripheral asymmetric 112Sn+124Sn, 124Sn+112Sn systems at incident energy of E/A=50 MeV. Isoscaling analyses imply that the quasi-projectile and quasi-ta rget in these collisions do not achieve isospin equilibrium, permitting an assessment of the isospin transport rates. We find that comparisons between isospin sensitive experimental and theoretical observables, using suitably chosen scaled ratios, permit investigation of the density dependence of the asymmetry term of the nuclear equation of state.
154 - Li Li , Yingxun Zhang , Zhuxia Li 2017
The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of ImQMD model. The simulations show that the multiplicity of charged particles cannot estimate the im pact parameter of heavy ion collisions very well, especially for central collisions at the beam energies lower than $sim$70 MeV/u due to the large fluctuations of the multiplicity of charged particles. The simulation results for the central collisions defined by the charged particle multiplicity are compared to those by using impact parameter b=2 fm and it shows that the charge distribution for $^{112}$Sn +$^{112}$Sn at 50 MeV/u is different evidently for two cases; and the chosen isospin sensitive observable, the coalescence invariant single neutron to proton yield ratio, reduces less than 15% for neutron-rich systems $^{124,132}$Sn +$^{124}$Sn at $E_{beam}$=50 MeV/u, while the coalescence invariant double neutron to proton yield ratio does not have obvious difference. The sensitivity of the chosen isospin sensitive observables to effective mass splitting is studied for central collisions defined by the multiplicity of charged particles. Our results show that the sensitivity is enhanced for $^{132}$Sn+$^{124}$Sn relative to that for $^{124}$Sn+$^{124}$Sn, and this reaction system should be measured in future experiments to study the effective mass splitting by heavy ion collisions.
69 - E. Galichet 2010
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transpor t model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 AM{} is estimated to 130$pm$10 fm/$c$.
We introduce isospin dependence in the cluster recognition algorithms used in the Quantum Molecular Dynamics model to describe fragment formation in heavy ion collisions. This change reduces the yields of emitted nucleons and enhances the yields of f ragments, especially heavier fragments. The enhancement of neutron-rich lighter fragments mainly occurs at mid-rapidity. Consequently, isospin dependent observables, such as isotope distributions, yield ratios of $n/p$, $t/^3He$, and isoscaling parameters are affected. We also investigate how equilibration in heavy ion collisions is affected by this change.
236 - H. Xu 2001
Isotope ratios of fragments produced at mid-rapidity in peripheral and central collisions of 114Cd ions with 92Mo and 98Mo target nuclei at E/A = 50 MeV are compared. Neutron-rich isotopes are preferentially produced in central collisions as compared to peripheral collisions. The influence of the size (A), density, N/Z, E*/A, and Eflow/A of the emitting source on the measured isotope ratios was explored by comparison with a statistical model (SMM). The mid-rapidity region associated with peripheral collisions does not appear to be neutron-enriched relative to central collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا