ترغب بنشر مسار تعليمي؟ اضغط هنا

New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts

141   0   0.0 ( 0 )
 نشر من قبل Anna Barnacka
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The abundance of primordial black holes is currently significantly constrained in a wide range of masses. The weakest limits are established for the small mass objects, where the small intensity of the associated physical phenomenon provides a challenge for current experiments. We used gamma- ray bursts with known redshifts detected by the Fermi Gamma-ray Burst Monitor (GBM) to search for the femtolensing effects caused by compact objects. The lack of femtolensing detection in the GBM data provides new evidence that primordial black holes in the mass range 5 times 10^{17} - 10^{20} g do not constitute a major fraction of dark matter.



قيم البحث

اقرأ أيضاً

The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* approx 5 times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic gamma-ray backgrounds. However, while the dominant contribution to the extragalactic background comes from the time-integrated emission of PBHs with initial mass M_*, the Galactic background is dominated by the instantaneous emission of those with initial mass slightly larger than M_* and current mass below M_*. Also, the instantaneous emission of PBHs smaller than 0.4 M_* mostly comprises secondary particles produced by the decay of directly emitted quark and gluon jets. These points were missed in the earlier analysis by Lehoucq et al. using EGRET data. For a monochromatic PBH mass function, with initial mass (1+mu) M_* and mu << 1, the current mass is (3mu)^{1/3} M_* and the Galactic background constrains the fraction of the Universe going into PBHs as a function of mu. However, the initial mass function cannot be precisely monochromatic and even a tiny spread of mass around M_* would generate a current low-mass tail of PBHs below M_*. This tail would be the main contributor to the Galactic background, so we consider its form and the associated constraints for a variety of scenarios with both extended and nearly-monochromatic initial mass functions. In particular, we consider a scenario in which the PBHs form from critical collapse and have a mass function which peaks well above M_*. In this case, the largest PBHs could provide the dark matter without the M_* ones exceeding the gamma-ray background limits.
We set a new upper limit on the abundance of primordial black holes (PBH) based on existing X-ray data. PBH interactions with interstellar medium should result in significant fluxes of X-ray photons, which would contribute to the observed number dens ity of compact X-ray objects in galaxies. The data constrain PBH number density in the mass range from a few $M_odot$ to $2times 10^7 M_odot$. PBH density needed to account for the origin of black holes detected by LIGO is marginally allowed.
As space expands, the energy density in black holes increases relative to that of radiation, providing us with motivation to consider scenarios in which the early universe contained a significant abundance of such objects. In this study, we revisit t he constraints on primordial black holes derived from measurements of the light element abundances. Black holes and their Hawking evaporation products can impact the era of Big Bang Nucleosynthesis (BBN) by altering the rate of expansion at the time of neutron-proton freeze-out, as well as by radiating mesons which can convert protons into neutrons and vice versa. Such black holes can thus enhance the primordial neutron-to-proton ratio, and increase the amount of helium that is ultimately produced. Additionally, the products of Hawking evaporation can break up helium nuclei, which both reduces the helium abundance and increases the abundance of primordial deuterium. Building upon previous work, we make use of modern deuterium and helium measurements to derive stringent constraints on black holes which evaporate in $t_{rm evap} sim 10^{-1}$ s to $sim 10^{13}$ s (corresponding to $M sim 6times 10^8$ g to $sim 2 times 10^{13}$ g, assuming Standard Model particle content). We also consider how physics beyond the Standard Model could impact these constraints. Due to the gravitational nature of Hawking evaporation, the rate at which a black hole evaporates, and the types of particles that are produced through this process, depend on the complete particle spectrum. Within this context, we discuss scenarios which feature a large number of decoupled degrees-of-freedom (ie~large hidden sectors), as well as models of TeV-scale supersymmetry.
The possibility that primordial black holes (PBHs) form a part of dark matter has been considered for a long time but poorly constrained in the $1-100~M_{odot}$ (or stellar mass range). However, a renewed special interest of PBHs in this mass window was triggered by the discovery at LIGO of the merger events of black-hole binaries. Fast radio bursts (FRBs) are bright radio transients with millisecond duration and high all-sky occurrence rate. Lensing effect of these bursts has been proposed as one of the cleanest probes for constraining the presence of PBHs in the stellar mass window. In this paper, we first investigate constraints on the abundance of PBHs from the latest FRB observations for both the monochromatic mass distribution and three other popular extended mass distributions (EMDs). We find that constraints from currently public FRB observations are relatively weaker than those from existing gravitational wave detections. Furthermore, we forecast constraining power of future FRB observations on the abundance of PBHs with different mass distributions of PBHs and different redshift distributions of FRBs taken into account. Finally, We find that constraints of parameter space on EMDs from $sim10^5$ FRBs with $overline{Delta t}leq1 ~rm ms$ would be comparable with what can be constrained from gravitational wave events. It is foreseen that upcoming complementary multi-messenger observations will yield considerable constraints on the possibilities of PBHs in this intriguing mass window.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic $gamma$-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than $sim 10^{15}$ g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves. We discuss the constraints on both the initial collapse fraction and the current fraction of the CDM in PBHs at each mass scale but stress that many of the constraints are associated with observational or theoretical uncertainties. We also consider indirect constraints associated with the amplitude of the primordial density fluctuations, such as second-order tensor perturbations and $mu$-distortions arising from the effect of acoustic reheating on the CMB, if PBHs are created from the high-$sigma$ peaks of nearly Gaussian fluctuations. Finally we discuss how the constraints are modified if the PBHs have an extended mass function, this being relevant if PBHs provide some combination of the dark matter, the LIGO/Virgo coalescences and the seeds for cosmic structure. Even if PBHs make a small contribution to the dark matter, they could play an important cosmological role and provide a unique probe of the early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا