ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of very high energy gamma-ray emission from the BL Lac object PKS 0301-243 with H.E.S.S

290   0   0.0 ( 0 )
 نشر من قبل Denis Wouters
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The active galactic nucleus PKS 0301-243 (z=0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV < E < 100 GeV) by Fermi/LAT. This paper reports on the discovery of PKS 0301-243 at very high energies (E>100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 hours. Gamma rays above 200 GeV are detected at a significance of 9.4{sigma}. A hint of variability at the 2.5{sigma} level is found. An integral flux I(E > 200 GeV) = (3.3 +/- 1.1_stat +/- 0.7_syst)e-12 ph cm^-2s^-1 and a photon index {Gamma} = 4.6 +/- 0.7_stat +/- 0.2_syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301-243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.



قيم البحث

اقرأ أيضاً

PKS 0625-354 (z=0.055) was observed with the four H.E.S.S. telescopes in 2012 during 5.5 hours. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1$sigma$. No significant variability is found in these observati ons. The source is well described with a power-law spectrum with photon index $Gamma =2.84 pm 0.50_{stat} pm 0.10_{syst}$ and normalization (at $E_0$=1.0 TeV) $N_0(E_0)=(0.58 pm 0.22_{stat} pm 0.12_{syst})times10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$. Multi-wavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT $gamma$-ray and Swift-XRT X-ray energy bands. Having a good multi-wavelength coverage from radio to very high energy, we performed a broadband modelling from two types of emission scenarios. The results from a one zone lepto-hadronic, and a multi-zone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multi-zone model. Models associated to the X-ray variability constraint supports previous results suggesting a BL Lac nature of PKS 0625-354, with, however, a large-scale jet structure typical of a radio galaxy.
Blazars are the most abundant class of known extragalactic very-high-energy (VHE, E>100 GeV) gamma-ray sources. However, one of the biggest difficulties in investigating their VHE emission resides in their limited number, since less than 60 of them a re known by now. In this contribution we report on H.E.S.S. observations of the BL Lac object PKS 1440-389. This source has been selected as target for H.E.S.S. based on its high-energy gamma-ray properties measured by Fermi-LAT. The extrapolation of this bright, hard-spectrum gamma-ray blazar into the VHE regime made a detection on a relatively short time scale very likely, despite its uncertain redshift. H.E.S.S. observations were carried out with the 4-telescope array from February to May 2012 and resulted in a clear detection of the source. Contemporaneous multi-wavelength data are used to construct the spectral energy distribution of PKS 1440-389 which can be described by a simple one-zone synchrotron-self Compton model.
The detection of the high-frequency peaked BL Lac object (HBL) SHBL J001355.9-185406 ($z$=0.095) at high (HE; 100 MeV$<$E$<$300 GeV) and very high-energy (VHE; $E>100,{rm GeV}$) with the fer Large Area Telescope (LAT) and the High Energy Stereoscopic System (H.E.S.S.) is reported. Dedicated observations have been performed with the H.E.S.S. telescopes, leading to a detection at the $5.5,sigma$ significance level. The measured flux above 310 GeV is $(8.3 pm 1.7_{rm{stat}}pm 1.7_{rm{sys}})times 10^{-13}$ photons cms (about 0.6% of that of the Crab Nebula), and the power law spectrum has a photon index of indexHESS. Using 3.5 years of publicly available fla data, a faint counterpart has been detected in the LAT data at the $5.5,sigma$ significance level, with an integrated flux above 300 MeV of $(9.3 pm 3.4_{rm stat} pm 0.8_{rm sys})times 10^{-10}$ photons cms and a photon index of $Gamma = 1.96 pm 0.20_{rm stat} pm 0.08_{rm sys}$. X-ray observations with textit{Swift}-XRT allow the synchrotron peak energy in $ u F_ u$ representation to be located at $sim 1.0,{rm keV}$. The broadband spectral energy distribution is modelled with a one-zone synchrotron self-Compton (SSC) model and the optical data by a black-body emission describing the thermal emission of the host galaxy. The derived parameters are typical for HBLs detected at VHE, with a particle dominated jet.
We study the non-thermal jet emission of the BL Lac object B3 2247+381 during a high optical state. The MAGIC telescopes observed the source during 13 nights between September 30th and October 30th 2010, collecting a total of 14.2 hours of good quali ty very high energy (VHE) $gamma$-ray data. Simultaneous multiwavelength data was obtained with X-ray observations by the Swift satellite and optical R-band observations at the KVA-telescope. We also use high energy $gamma$-ray (HE, 0.1 GeV-100 GeV) data from the Fermi satellite. The BL Lac object B3 2247+381 (z=0.119) was detected, for the first time, at VHE $gamma$-rays at a statistical significance of 5.6 $sigma$. A soft VHE spectrum with a photon index of -3.2 $pm$ 0.6 was determined. No significant short term flux variations were found. We model the spectral energy distribution using a one-zone SSC-model, which can successfully describe our data.
PKS 0548-322 (z=0.069) is a ``high-frequency-peaked BL Lac object and a candidate very high energy (VHE, E>100 GeV) gamma-ray emitter, due to its high X-ray and radio flux. Observations at the VHE band provide insights into the origin of very energet ic particles present in this source and the radiation processes at work. We report observations made between October 2004 and January 2008 with the H.E.S.S. array, a four imaging atmospheric-Cherenkov telescopes. Contemporaneous UV and X-ray observations with the Swift satellite in November 2006 are also reported. PKS 0548-322 is detected for the first time in the VHE band with H.E.S.S. We measure an excess of 216 gamma-rays corresponding to a significance of 5.6 standard deviations. The photon spectrum of the source is described by a power-law, with a photon index of Gamma=2.86 +/- 0.34 (stat) +/- 0.10 (sys). The integral flux above 200 GeV is 1.3 % of the flux of the Crab Nebula, and is consistent with being constant in time. Contemporaneous Swift/XRT observations reveal an X-ray flux between 2 and 10 keV of F_{2-10 keV}=2.3 +/- 0.2 x 10^{-11} erg.cm^{-2}. s^{-1}, an intermediate intensity state with respect to previous observations. The spectral energy distribution can be reproduced using a simple one-zone synchrotron self Compton model, with parameters similar those observed for other sources of this type.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا