ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange bias and training effects in antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices

134   0   0.0 ( 0 )
 نشر من قبل Surya Narayana jammalamadaka
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exchange bias (EB) and the training effects (TE) in an antiferromagnetically coupled La0.7Sr0.3MnO3 / SrRuO3 superlattices were studied in the temperature range 1.8 - 150 K. Strong antiferromagnetic (AFM) interlayer coupling is evidenced from AC - susceptibility measurements. Below 100 K, vertical magnetization shifts are present due to the two remanent states corresponding to the two ferromagnetic (FM) layers at FM and AFM coupling condition. After field cooling (FC), significant decrease in the exchange bias field (HEB) is observed when cycling the system through several consecutive hysteresis loops. Quantitative analysis for the variation of HEB vs. number of field cycles (n) indicates an excellent agreement between the theory, based on triggered relaxation phenomena, and our experimental observations. Nevertheless, the crucial fitting parameter K indicates smooth training effect upon repeated field cycling, in accordance with our observation.

قيم البحث

اقرأ أيضاً

107 - Q. Zhang , S. Thota , F. Guillou 2010
Magnetic properties of a series of (La0.7Sr0.3MnO3/SrRuO3) superlattices, where the SrRuO3 layer thickness is varying, are examined. A room-temperature magnetocaloric effect is obtained owing to the finite size effect which reduces the TC of La0.7Sr0 .3MnO3 layers. While the working temperature ranges are enlarged,, -DeltaSmax values remains similar to the values in polycrystalline La0.7Sr0.3MnO3. Consequently, the relative cooling powers are significantly improved, the microscopic mechanism of which is related to the effect of the interfaces at La0.7Sr0.3MnO3/SrRuO3 and higher nanostructural disorder. This study indicates that artificial oxide superlattices/multilayers might provide an alternative pathway in searching for efficient room-temperature magnetic refrigerators for (nano)microscale systems.
375 - Y. Shiomi , Y. Handa , T. Kikkawa 2015
Transverse thermoelectric effects in response to an out-of-plane heat current have been studied in an external magnetic field for ferromagnetic superlattices consisting of La0.67Sr0.33MnO3 and SrRuO3 layers. The superlattices were fabricated on SrTiO 3 substrates by pulsed laser deposition. We found that the sign of the transverse thermoelectric voltage for the superlattices is opposite to that for La0.67Sr0.33MnO3 and SrRuO3 single layers at 200 K, implying an important role of spin Seebeck effects inside the superlattices. At 10 K, the magnetothermoelectric curves shift from the zero field due to an antiferromagnetic coupling between layers in the superlattices.
Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macro scopic world. Here we report the study of the resistive switching characteristics of a of hybrid structure made out of a superlattice with ultrathin layers of two ferromagnetic metallic oxides, La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO). Bipolar resistive switching memory effects are measured on these LSMO/SRO superlattices, and the observed switching is explainable by ohmic and space charge-limited conduction laws. It is evident from the endurance characteristics that the on/off memory window of the cell is greater than 14, which indicates that this cell can reliably distinguish the stored information between high and low resistance states. The findings may pave a way to the construction of devices based on nonvolatile resistive memory effects.
Oxide heterostructures exhibit a rich variety of magnetic and transport properties which arise due to contact at an interface. This can lead to surprising effects that are very different from the bulk properties of the materials involved. We report t he magnetic properties of bilayers of SrRuO3, a well known ferromagnet, and CaRuO3, which is nominally a paramagnet. We find intriguing features that are consistent with CaRuO3 developing dual magnetic character, with both a net moment as well as antiferromagnetic order. We argue the ordered SrRuO3 layer induces an undulating polarization profile in the conduction electrons of CaRuO3, by a mechanism akin to Friedel oscillations. At low temperatures, this oscillating polarization is inherited by rigid local moments within CaRuO3, leading to a robust exchange bias. We present ab initio simulations in support of this picture. Our results demonstrate a new ordering mechanism and throw light on the magnetic character of CaRuO3 .
Antiferromagnetic materials are outstanding candidates for next generation spintronic applications, because their ultrafast spin dynamics makes it possible to realize several orders of magnitude higher-speed devices than conventional ferromagnetic ma terials1. Though spin-transfer torque (STT) is a key for electrical control of spins as successfully demonstrated in ferromagnetic spintronics, experimental understanding of STT in antiferromagnets has been still lacking despite a number of pertinent theoretical studies2-5. Here, we report experimental results on the effects of STT on domain-wall (DW) motion in antiferromagnetically-coupled ferrimagnets. We find that non-adiabatic STT acts like a staggered magnetic field and thus can drive DWs effectively. Moreover, the non-adiabaticity parameter {beta} of STT is found to be significantly larger than the Gilbert damping parameter {alpha}, challenging our conventional understanding of the non-adiabatic STT based on ferromagnets as well as leading to fast current-induced antiferromagnetic DW motion. Our study will lead to further vigorous exploration of STT for antiferromagnetic spin textures for fundamental physics on spin-charge interaction as wells for efficient electrical control of antiferromagnetic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا