ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized form of optimal teleportation witnesses

43   0   0.0 ( 0 )
 نشر من قبل Satyabrata Adhikari
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a generalized form of optimal teleportation witness to demonstrate their importance in experimental detection of the larger set of entangled states useful for teleportation in higher dimensional systems. The interesting properties of our witness reveal that teleportation witness can be used to characterize mixed state entanglement using Schmidt numbers. Our results show that while every teleportation witness is also a entanglement witness, the converse is not true. Also, we show that a hermitian operator is a teleportation witness iff it is a decomposable entanglement witness. In addition, we analyze the practical significance of our study by decomposing our teleportation witness in terms of Pauli and Gell-Mann matrices, which are experimentally measurable quantities.

قيم البحث

اقرأ أيضاً

We provide a class of optimal nondecomposable entanglement witnesses for 4N x 4N composite quantum systems or, equivalently, a new construction of nondecomposable positive maps in the algebra of 4N x 4N complex matrices. This construction provides na tural generalization of the Robertson map. It is shown that their structural physical approximations give rise to entanglement breaking channels.
Deterministic port-based teleportation (dPBT) protocol is a scheme where a quantum state is guaranteed to be transferred to another system without unitary correction. We characterize the best achievable performance of the dPBT when both the resource state and the measurement is optimized. Surprisingly, the best possible fidelity for an arbitrary number of ports and dimension of the teleported state is given by the largest eigenvalue of a particular matrix -- Teleportation Matrix. It encodes the relationship between a certain set of Young diagrams and emerges as the the optimal solution to the relevant semidefinite program.
We present an analysis of the properties and characteristics of weakly optimal entanglement witnesses, that is witnesses whose expectation value vanishes on at least one product vector. Any weakly optimal entanglement witness can be written as the fo rm of $W^{wopt}=sigma-c_{sigma}^{max} I$, where $c_{sigma}^{max}$ is a non-negative number and $I$ is the identity matrix. We show the relation between the weakly optimal witness $W^{wopt}$ and the eigenvalues of the separable states $sigma$. Further we give an application of weakly optimal witnesses for constructing entanglement witnesses in a larger Hilbert space by extending the result of [P. Badzic{a}g {it et al}, Phys. Rev. A {bf 88}, 010301(R) (2013)], and we examine their geometric properties.
120 - Jaehak Lee , Jiyong Park , 2017
Quantum teleportation is one of the crucial protocols in quantum information processing. It is important to accomplish an efficient teleportation under practical conditions, aiming at a higher fidelity desirably using fewer resources. The continuous- variable (CV) version of quantum teleportation was first proposed using a Gaussian state as a quantum resource, while other attempts were also made to improve performance by applying non-Gaussian operations. We investigate the CV teleportation to find its ultimate fidelity under energy constraint identifying an optimal quantum state. For this purpose, we present a formalism to evaluate teleportation fidelity as an expectation value of an operator. Using this formalism, we prove that the optimal state must be a form of photon-number entangled states. We further show that Gaussian states are near-optimal while non-Gaussian states make a slight improvement and therefore are rigorously optimal, particularly in the low-energy regime.
We consider a single copy of a mixed state of two qubits and derive the optimal trace-preserving local operations assisted by classical communication (LOCC) such as to maximize the fidelity of teleportation that can be achieved with this state. These optimal local operations turn out to be implementable by one-way communication, and always yields a teleportation fidelity larger than 2/3 if the original state is entangled. This maximal achievable fidelity is an entanglement measure and turns out to quantify the minimal amount of mixing required to destroy the entanglement in a quantum state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا